Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Res Rev ; 41(4): 2316-2349, 2021 07.
Article in English | MEDLINE | ID: mdl-33645857

ABSTRACT

Mesenchymal stem cells (MSCs) play an important role in tissue homeostasis and damage repair through their ability to differentiate into cells of different tissues, trophic support, and immunomodulation. These properties made them attractive for clinical applications in regenerative medicine, immune disorders, and cell transplantation. However, despite multiple preclinical and clinical studies demonstrating beneficial effects of MSCs, their native identity and mechanisms of action remain inconclusive. Since its discovery, the CD73/ecto-5'-nucleotidase is known as a classic marker for MSCs, but its role goes far beyond a phenotypic characterization antigen. CD73 contributes to adenosine production, therefore, is an essential component of purinergic signaling, a pathway composed of different nucleotides and nucleosides, which concentrations are finely regulated by the ectoenzymes and receptors. Thus, purinergic signaling controls pathophysiological functions such as proliferation, migration, cell fate, and immune responses. Despite the remarkable progress already achieved in considering adenosinergic pathway as a therapeutic target in different pathologies, its role is not fully explored in the context of the therapeutic functions of MSCs. Therefore, in this review, we provide an overview of the role of CD73 and adenosine-mediated signaling in the functions ascribed to MSCs, such as homing and proliferation, cell differentiation, and immunomodulation. Additionally, we will discuss the pathophysiological role of MSCs, via CD73 and adenosine, in different diseases, as well as in tumor development and progression. A better understanding of the adenosinergic pathway in the regulation of MSCs functions will help to provide improved therapeutic strategies applicable in regenerative medicine.


Subject(s)
Mesenchymal Stem Cells , 5'-Nucleotidase/metabolism , Adenosine , Cell Differentiation , Immunomodulation , Signal Transduction
2.
Angiogenesis ; 21(1): 15-22, 2018 02.
Article in English | MEDLINE | ID: mdl-28988272

ABSTRACT

Considerable progress has been made on the development of adipose-derived stem/stromal cells (ASCs) as pro-angiogenic therapeutic tools. However, variable clinical results highlight the need for devising strategies to enhance their therapeutic efficacy. Since ASCs proliferate and stabilize newly formed vessels during the angiogenic phase of adipose tissue formation, we hypothesized that mimicking an angiogenic milieu during culture of ASCs would enhance their capacity to support endothelial cell survival and angiogenesis. To test this, we compared the effect of an endothelial growth medium (EGM-2) and conventional media (αMEM) on the progenitor and angiogenic properties of ASCs. ASCs cultured in EGM-2 (ASC-EGM) displayed the highest clonogenic efficiency, proliferative potential and multilineage potential. After co-culture under growth factor starvation, only ASC-EGM attenuated luciferase-expressing human umbilical vein endothelial cells (HUVECluc) apoptosis and supported the formation of endothelial cords in a dose-dependent manner. These effects were recapitulated by the conditioned medium of ASC-EGM, which displayed a 100-fold higher expression of hepatocyte growth factor in comparison with ASC-αMEM. Next, HUVECluc and ASCs were co-transplanted subcutaneously into immunodeficient mice, and the survival of HUVECluc was monitored by bioluminescent imaging. After 60 days, the survival of HUVECluc transplanted alone was equivalent to that of HUVECluc co-transplanted with ASC-αMEM (15.0 ± 0.7 vs. 13.0 ± 0.5%). Strikingly, co-transplantation with ASC-EGM increased HUVECluc survival to 105.0 ± 3.5%, and the resulting organoids displayed functional vasculature with the highest human-derived vascular area. These findings demonstrate that pre-conditioning of ASCs in endothelial growth medium augment their pro-angiogenic properties and could enhance their therapeutic efficacy against ischemic diseases.


Subject(s)
Adipose Tissue/metabolism , Angiogenesis Inducing Agents/pharmacology , Cell Proliferation/drug effects , Cell- and Tissue-Based Therapy , Mesenchymal Stem Cells/metabolism , Neovascularization, Physiologic/drug effects , Adipose Tissue/cytology , Animals , Apoptosis/drug effects , Apoptosis/physiology , Cell Proliferation/physiology , Cell- and Tissue-Based Therapy/mortality , Colony-Forming Units Assay , Culture Media/pharmacology , Heterografts , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Luciferases , Luminescent Measurements , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mice
3.
J Cell Biochem ; 119(5): 3873-3884, 2018 05.
Article in English | MEDLINE | ID: mdl-29125884

ABSTRACT

Adipose-derived stromal/stem cells (ASCs) are promising candidates for cell-based therapies. However, the lack of markers able to unequivocally identify these cells, the differential expression of cell surface molecules among stromal progenitors from different tissues and cellular alterations caused by culture are phenomena that need to be comprehensively addressed in order to improve ASC purification and consequently refine our knowledge about their function and therapeutic efficiency. In this study, we investigated the potential of CD271, a marker used for purification of bone marrow-derived mesenchymal stem cells, on enriching ASCs from CD34+ stromal cells of human adipose tissue. Putative ASC populations were sorted based on CD271 expression (CD45- CD31- CD34+ CD271+ and CD45- CD31- CD34+ CD271- cells) and compared regarding their clonogenic efficiency, proliferation, immunophenotypic profile, and multilineage potential. To shed light on their native identity, we also interrogated the expression of key perivascular cell markers in freshly isolated cells. CD271- cells displayed twofold higher clonogenic efficiency than CD271+ cells. Upon culture, the progeny of both populations displayed similar immunophenotypic profile and in vitro adipogenic and chondrogenic potentials, while CD271+ cells produced more calcified extracellular matrix. Interestingly, uncultured freshly isolated CD271+ cells displayed higher expression of pericyte-associated markers than CD271- cells and localized in the inner region of the perivascular wall. Our results demonstrate that cells with in vitro ASC traits can be obtained from both CD271+ and CD271- stromal populations of human adipose tissue. In addition, gene expression profiling and in situ localization analyses indicate that the CD271+ population displays a pericytic phenotype.


Subject(s)
Adipose Tissue/metabolism , Antigens, CD34/metabolism , Gene Expression Regulation , Nerve Tissue Proteins/biosynthesis , Receptors, Nerve Growth Factor/biosynthesis , Adipose Tissue/cytology , Adult , Female , Humans , Male , Stromal Cells/cytology , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...