Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Immunol ; 54(6): e2350891, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38509863

ABSTRACT

Metastatic colorectal cancer (CRC) is highly resistant to therapy and prone to recur. The tumor-induced local and systemic immunosuppression allows cancer cells to evade immunosurveillance, facilitating their proliferation and dissemination. Dendritic cells (DCs) are required for the detection, processing, and presentation of tumor antigens, and subsequently for the activation of antigen-specific T cells to orchestrate an effective antitumor response. Notably, successful tumors have evolved mechanisms to disrupt and impair DC functions, underlining the key role of tumor-induced DC dysfunction in promoting tumor growth, metastasis initiation, and treatment resistance. Conventional DC type 2 (cDC2) are highly prevalent in tumors and have been shown to present high phenotypic and functional plasticity in response to tumor-released environmental cues. This plasticity reverberates on both the development of antitumor responses and on the efficacy of immunotherapies in cancer patients. Uncovering the processes, mechanisms, and mediators by which CRC shapes and disrupts cDC2 functions is crucial to restoring their full antitumor potential. In this study, we use our recently developed 3D DC-tumor co-culture system to investigate how patient-derived primary and metastatic CRC organoids modulate cDC2 phenotype and function. We first demonstrate that our collagen-based system displays extensive interaction between cDC2 and tumor organoids. Interestingly, we show that tumor-corrupted cDC2 shift toward a CD14+ population with defective expression of maturation markers, an intermediate phenotype positioned between cDC2 and monocytes, and impaired T-cell activating abilities. This phenotype aligns with the newly defined DC3 (CD14+ CD1c+ CD163+) subset. Remarkably, a comparable population was found to be present in tumor lesions and enriched in the peripheral blood of metastatic CRC patients. Moreover, using EP2 and EP4 receptor antagonists and an anti-IL-6 neutralizing antibody, we determined that the observed phenotype shift is partially mediated by PGE2 and IL-6. Importantly, our system holds promise as a platform for testing therapies aimed at preventing or mitigating tumor-induced DC dysfunction. Overall, our study offers novel and relevant insights into cDC2 (dys)function in CRC that hold relevance for the design of therapeutic approaches.


Subject(s)
Colorectal Neoplasms , Dendritic Cells , Dinoprostone , Interleukin-6 , Organoids , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Organoids/immunology , Organoids/metabolism , Dinoprostone/metabolism , Interleukin-6/metabolism , Interleukin-6/immunology , Coculture Techniques , Phenotype , Cell Plasticity
2.
Cell Rep Med ; 5(2): 101386, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38242119

ABSTRACT

The human dendritic cell (DC) family has recently been expanded by CD1c+CD14+CD163+ DCs, introduced as DC3s. DC3s are found in tumors and peripheral blood of cancer patients. Here, we report elevated frequencies of CD14+ cDC2s, which restore to normal frequencies after tumor resection, in non-small cell lung cancer patients. These CD14+ cDC2s phenotypically resemble DC3s and exhibit increased PD-L1, MERTK, IL-10, and IDO expression, consistent with inferior T cell activation ability compared with CD14- cDC2s. In melanoma patients undergoing CD1c+ DC vaccinations, increased CD1c+CD14+ DC frequencies correlate with reduced survival. We demonstrate conversion of CD5+/-CD1c+CD14- cDC2s to CD14+ cDC2s by tumor-associated factors, whereas monocytes failed to express CD1c under similar conditions. Targeted proteomics identified IL-6 and M-CSF as dominant drivers, and we show that IL-6R and CSF1R inhibition prevents tumor-induced CD14+ cDC2s. Together, this indicates cDC2s as direct pre-cursors of DC3-like CD1c+CD14+ DCs and provides insights into the importance and modulation of CD14+ DC3s in anti-tumor immune responses.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Dendritic Cells , Lung Neoplasms/metabolism , Signal Transduction , Monocytes , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Colony-Stimulating Factor/metabolism
3.
Nat Biomed Eng ; 7(9): 1097-1112, 2023 09.
Article in English | MEDLINE | ID: mdl-37291433

ABSTRACT

Immunoparalysis is a compensatory and persistent anti-inflammatory response to trauma, sepsis or another serious insult, which increases the risk of opportunistic infections, morbidity and mortality. Here, we show that in cultured primary human monocytes, interleukin-4 (IL4) inhibits acute inflammation, while simultaneously inducing a long-lasting innate immune memory named trained immunity. To take advantage of this paradoxical IL4 feature in vivo, we developed a fusion protein of apolipoprotein A1 (apoA1) and IL4, which integrates into a lipid nanoparticle. In mice and non-human primates, an intravenously injected apoA1-IL4-embedding nanoparticle targets myeloid-cell-rich haematopoietic organs, in particular, the spleen and bone marrow. We subsequently demonstrate that IL4 nanotherapy resolved immunoparalysis in mice with lipopolysaccharide-induced hyperinflammation, as well as in ex vivo human sepsis models and in experimental endotoxemia. Our findings support the translational development of nanoparticle formulations of apoA1-IL4 for the treatment of patients with sepsis at risk of immunoparalysis-induced complications.


Subject(s)
Interleukin-4 , Sepsis , Humans , Animals , Mice , Interleukin-4/metabolism , Trained Immunity , Monocytes
4.
J Immunother Cancer ; 10(4)2022 04.
Article in English | MEDLINE | ID: mdl-35428705

ABSTRACT

BACKGROUND: Type 1 conventional dendritic cells (cDC1s) are characterized by their ability to induce potent CD8+ T cell responses. In efforts to generate novel vaccination strategies, notably against cancer, human cDC1s emerge as an ideal target to deliver antigens. cDC1s uniquely express XCR1, a seven transmembrane G protein-coupled receptor. Due to its restricted expression and endocytic nature, XCR1 represents an attractive receptor to mediate antigen-delivery to human cDC1s. METHODS: To explore tumor antigen delivery to human cDC1s, we used an engineered version of XCR1-binding lymphotactin (XCL1), XCL1(CC3). Site-specific sortase-mediated transpeptidation was performed to conjugate XCL1(CC3) to an analog of the HLA-A*02:01 epitope of the cancer testis antigen New York Esophageal Squamous Cell Carcinoma-1 (NY-ESO-1). While poor epitope solubility prevented isolation of stable XCL1-antigen conjugates, incorporation of a single polyethylene glycol (PEG) chain upstream of the epitope-containing peptide enabled generation of soluble XCL1(CC3)-antigen fusion constructs. Binding and chemotactic characteristics of the XCL1-antigen conjugate, as well as its ability to induce antigen-specific CD8+ T cell activation by cDC1s, was assessed. RESULTS: PEGylated XCL1(CC3)-antigen conjugates retained binding to XCR1, and induced cDC1 chemoattraction in vitro. The model epitope was efficiently cross-presented by human cDC1s to activate NY-ESO-1-specific CD8+ T cells. Importantly, vaccine activity was increased by targeting XCR1 at the surface of cDC1s. CONCLUSION: Our results present a novel strategy for the generation of targeted vaccines fused to insoluble antigens. Moreover, our data emphasize the potential of targeting XCR1 at the surface of primary human cDC1s to induce potent CD8+ T cell responses.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Dendritic Cells , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Lymphokines , Membrane Proteins , Sialoglycoproteins , Antigens, Neoplasm/administration & dosage , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Cross-Priming , Dendritic Cells/immunology , Epitopes/immunology , Esophageal Neoplasms/immunology , Esophageal Neoplasms/therapy , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/therapy , Humans , Lymphokines/administration & dosage , Lymphokines/immunology , Male , Membrane Proteins/administration & dosage , Membrane Proteins/immunology , Sialoglycoproteins/administration & dosage , Sialoglycoproteins/immunology
5.
J Biol Chem ; 297(3): 100991, 2021 09.
Article in English | MEDLINE | ID: mdl-34419450

ABSTRACT

Fic domain-containing AMP transferases (fic AMPylases) are conserved enzymes that catalyze the covalent transfer of AMP to proteins. This posttranslational modification regulates the function of several proteins, including the ER-resident chaperone Grp78/BiP. Here we introduce a mouse FICD (mFICD) AMPylase knockout mouse model to study fic AMPylase function in vertebrates. We find that mFICD deficiency is well tolerated in unstressed mice. We also show that mFICD-deficient mouse embryonic fibroblasts are depleted of AMPylated proteins. mFICD deletion alters protein synthesis and secretion in splenocytes, including that of IgM, an antibody secreted early during infections, and the proinflammatory cytokine IL-1ß, without affecting the unfolded protein response. Finally, we demonstrate that visual nonspatial short-term learning is stronger in old mFICD-/- mice than in wild-type controls while other measures of cognition, memory, and learning are unaffected. Together, our results suggest a role for mFICD in adaptive immunity and neuronal plasticity in vivo.


Subject(s)
Cytokines/metabolism , Learning , Transferases/metabolism , Visual Perception , Animals , Cells, Cultured , Endoplasmic Reticulum Chaperone BiP , Mice , Mice, Knockout
6.
Sci Adv ; 5(8): eaaw1822, 2019 08.
Article in English | MEDLINE | ID: mdl-31489367

ABSTRACT

Hybridoma technology is instrumental for the development of novel antibody therapeutics and diagnostics. Recent preclinical and clinical studies highlight the importance of antibody isotype for therapeutic efficacy. However, since the sequence encoding the constant domains is fixed, tuning antibody function in hybridomas has been restricted. Here, we demonstrate a versatile CRISPR/HDR platform to rapidly engineer the constant immunoglobulin domains to obtain recombinant hybridomas, which secrete antibodies in the preferred format, species, and isotype. Using this platform, we obtained recombinant hybridomas secreting Fab' fragments, isotype-switched chimeric antibodies, and Fc-silent mutants. These antibody products are stable, retain their antigen specificity, and display their intrinsic Fc-effector functions in vitro and in vivo. Furthermore, we can site-specifically attach cargo to these antibody products via chemoenzymatic modification. We believe that this versatile platform facilitates antibody engineering for the entire scientific community, empowering preclinical antibody research.


Subject(s)
Antibodies, Monoclonal/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Hybridomas/physiology , Animals , Antibody Specificity/genetics , Cell Line, Tumor , Genomics/methods , Immunoglobulin Fab Fragments/genetics , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins/genetics
7.
Int Orthod ; 7(1): 71-95, 2009 Mar.
Article in English | MEDLINE | ID: mdl-20303903

ABSTRACT

The patient requirement for tailor-made individualized orthodontic treatment is met by cutting edge, state-of-the art computer-aided design and manufacturing technology (CAD/CAM), in order to efficiently and smoothly merge the two normally separate processes of bracket fabrication and bracket positioning. Also, the specific approach of the lingual orthodontic specialist using an innovative and effective tool to manage almost every incisor positioning is an absolute key to satisfying the patients' demand. Four clinical cases are shown below with a view to illustrating the precise incisor positioning, as requested by the patients.


Subject(s)
Computer-Aided Design , Esthetics, Dental , Incisor/physiopathology , Malocclusion/therapy , Orthodontic Appliance Design , Orthodontics, Corrective/instrumentation , Adult , Cephalometry , Female , Humans , Open Bite/therapy , Orthodontic Brackets , Orthodontics, Corrective/methods , Torque
SELECTION OF CITATIONS
SEARCH DETAIL
...