Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Psychiatry ; 89(6): 588-599, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33012522

ABSTRACT

BACKGROUND: Histamine (HA), a wake-promoting monoamine implicated in stress-related arousal states, is synthesized in histidine decarboxylase-expressing hypothalamic neurons of the tuberomammillary nucleus. Histidine decarboxylase-containing varicosities diffusely innervate striatal and mesolimbic networks, including the nucleus accumbens (NAc). The NAc integrates diverse monoaminergic inputs to coordinate motivated behavior. While the NAc expresses various HA receptor subtypes, mechanisms by which HA modulates NAc circuit dynamics are undefined. METHODS: Using male D1tdTomato transgenic reporter mice, whole-cell patch-clamp electrophysiology, and input-specific optogenetics, we employed a targeted pharmacological approach to interrogate synaptic mechanisms recruited by HA signaling at glutamatergic synapses in the NAc. We incorporated an immobilization stress protocol to assess whether acute stress engages these mechanisms at glutamatergic synapses onto D1 receptor-expressing [D1(+)] medium spiny neurons (MSNs) in the NAc core. RESULTS: HA negatively regulates excitatory gain onto D1(+)-MSNs via presynaptic H3 receptor-dependent long-term depression that requires Gßγ-directed Akt-GSK3ß signaling. Furthermore, HA asymmetrically regulates glutamatergic transmission from the prefrontal cortex and mediodorsal thalamus, with inputs from the prefrontal cortex undergoing robust HA-induced long-term depression. Finally, we report that acute immobilization stress attenuates this long-term depression by recruiting endogenous H3 receptor signaling in the NAc at glutamatergic synapses onto D1(+)-MSNs. CONCLUSIONS: Stress-evoked HA signaling in the NAc recruits H3 heteroreceptor signaling to shift thalamocortical input onto D1(+)-MSNs in the NAc. Our findings provide novel insight into an understudied neuromodulatory system within the NAc and implicate HA in stress-associated physiological states.


Subject(s)
Histamine , Nucleus Accumbens , Animals , Bias , Male , Mice , Mice, Inbred C57BL , Nucleus Accumbens/metabolism , Receptors, Dopamine D1/metabolism , Synapses/metabolism
2.
Antivir Chem Chemother ; 27: 2040206619830197, 2019.
Article in English | MEDLINE | ID: mdl-30759993

ABSTRACT

Human metapneumovirus, a paramyxovirus discovered in 2001, is a major cause of lower respiratory infection in adults and children worldwide. There are no licensed vaccines or drugs for human metapneumovirus. We developed a fluorescent, cell-based medium-throughput screening assay for human metapneumovirus that captures inhibitors of all stages of the viral lifecycle except budding of progeny virus particles from the cell membrane. We optimized and validated the assay and performed a successful medium-throughput screening. A number of hits were identified, several of which were confirmed to inhibit viral replication in secondary assays. This assay offers potential to discover new antivirals for human metapneumovirus and related respiratory viruses. Compounds discovered using the medium-throughput screening may also provide useful probes of viral biology.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Drug Evaluation, Preclinical/methods , Metapneumovirus/drug effects , Animals , Antiviral Agents/isolation & purification , Cell Line , Humans , Metapneumovirus/pathogenicity , Metapneumovirus/physiology , Microbial Sensitivity Tests , Respiratory Tract Infections/microbiology , Serial Passage , Virus Replication/drug effects
3.
J Virol ; 88(11): 6368-79, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24672031

ABSTRACT

UNLABELLED: Human metapneumovirus (HMPV) is a leading cause of respiratory disease in infants, children, and the elderly worldwide, yet no licensed vaccines exist. Live-attenuated vaccines present safety challenges, and protein subunit vaccines induce primarily antibody responses. Virus-like particles (VLPs) are an attractive alternative vaccine approach because of reduced safety concerns compared with live vaccines. We generated HMPV VLPs by expressing viral proteins in suspension-adapted human embryonic kidney epithelial (293-F) cells and found that the viral matrix (M) and fusion (F) proteins were sufficient to form VLPs. We previously reported that the VLPs resemble virus morphology and incorporate fusion-competent F protein (R. G. Cox, S. B. Livesay, M. Johnson, M. D. Ohi, and J. V. Williams, J. Virol. 86:12148-12160, 2012), which we hypothesized would elicit F-specific antibody and T cell responses. In this study, we tested whether VLP immunization could induce protective immunity to HMPV by using a mouse model. C57BL/6 mice were injected twice intraperitoneally with VLPs alone or with adjuvant and subsequently challenged with HMPV. Mice were euthanized 5 days postinfection, and virus titers, levels of neutralizing antibodies, and numbers of CD3(+) T cells were quantified. Mice immunized with VLPs mounted an F-specific antibody response and generated CD8(+) T cells recognizing an F protein-derived epitope. VLP immunization induced a neutralizing-antibody response that was enhanced by the addition of either TiterMax Gold or α-galactosylceramide adjuvant, though adjuvant reduced cellular immune responses. Two doses of VLPs conferred complete protection from HMPV replication in the lungs of mice and were not associated with a Th2-skewed cytokine response. These results suggest that nonreplicating VLPs are a promising vaccine candidate for HMPV. IMPORTANCE: Human metapneumovirus (HMPV) is a leading cause of acute respiratory infection in infants, children, and the elderly worldwide, yet no licensed vaccines exist. Live-attenuated vaccines present safety challenges, and protein subunit vaccines induce primarily antibody responses. Virus-like particles (VLPs) are an attractive alternative vaccine approach. We generated HMPV VLPs by expressing the viral matrix (M) and fusion (F) proteins in mammalian cells. We found that mice immunized with VLPs mounted an F-specific antibody response and generated CD8(+) T cells recognizing an F protein-derived epitope. VLP immunization induced a neutralizing-antibody response that was enhanced by the addition of either TiterMax Gold or α-galactosylceramide adjuvant. Two doses of VLPs conferred complete protection against HMPV replication in the lungs of mice and were not associated with a Th2-skewed cytokine response. These results suggest that nonreplicating VLPs are a promising vaccine candidate for HMPV.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunity, Cellular/immunology , Metapneumovirus/immunology , Vaccines, Virus-Like Particle/immunology , Analysis of Variance , Animals , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Enzyme-Linked Immunospot Assay , Flow Cytometry , Galactosylceramides , HEK293 Cells , Humans , Immunohistochemistry , Lung/immunology , Lung/pathology , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Poloxalene , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Vaccines, Virus-Like Particle/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...