Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 57(11): 4878-82, 2009 Jun 10.
Article in English | MEDLINE | ID: mdl-19489626

ABSTRACT

An enrichment culture approach was used to isolate a pure culture of the yeast Lipomyces kononenkoae, which had the ability to grow on the herbicide picloram. The yeast rapidly and completely degraded 50 microg mL(-1) picloram by 48 h of growth. While L. kononenkoae was found to use both N atoms of picloram as a sole nitrogen source for growth, it failed to mineralize the herbicide or use it as a sole C source. Product analysis done using LC-ESI-MS indicated that biodegradation of picloram by L. kononenkoae proceeds via a didechlorinated, dihydroxylated, pyridinecarboxylic acid derivative. Our results are consistent with the hypothesis that the majority of picloram degradation in the soil is likely due to microbial catabolic processes.


Subject(s)
Herbicides/metabolism , Lipomyces/metabolism , Picloram/metabolism , Soil Microbiology , Biodegradation, Environmental , Herbicides/chemistry , Kinetics , Lipomyces/chemistry , Picloram/chemistry
2.
J Agric Food Chem ; 56(3): 1025-8, 2008 Feb 13.
Article in English | MEDLINE | ID: mdl-18181567

ABSTRACT

Although a number of studies have been done describing the fate of Bacillus thuringiensis insecticidal endotoxins in soil, there is conflicting information on the persistence of this class of insecticidal toxins. This is partly due to methodological limitations in many of the previous studies. In the experiments reported here, 14C-labeled B. thuringiensis Cry1Ac endotoxin was used to study its mineralization in soil incubated under controlled conditions. Fifty-nine percent of the radiolabeled Cry1Ac was recovered as 14CO2 at the end of the 20 day incubation period. The addition of 4.5% corn residues stimulated mineralization of [14C]Cry1Ac toxin, and mineralization of glucose was 3.6 times faster than that of the Cry1Ac toxin, indicating that the soil was microbiologically and metabolically active. Because only low mineralization (approximately 6%) of the radiolabeled toxin was observed in autoclaved soil, the current findings indicate that microbial processes play a major role in the dissipation of the Cry1Ac endotoxin in soil. The results of this study suggest that there may be limited risk of the bioaccumulation of Cry1Ac in soil due to the eventual release of this insecticidal toxin by Bt-protected crops.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Minerals/metabolism , Soil Microbiology , Soil/analysis , Bacillus thuringiensis Toxins , Oxidation-Reduction , Plants, Genetically Modified/metabolism
3.
J Agric Food Chem ; 55(7): 2677-82, 2007 Apr 04.
Article in English | MEDLINE | ID: mdl-17348682

ABSTRACT

Veterinary antimicrobial agents have been detected in a number of environmental samples, including agricultural soils. In this study, we investigated the persistence and sorption of the sulfonamides sulfamethazine (SMZ) and sulfachloropyridine (SCP) in soil and their potential effects on soil microorganisms. The sulfonamides dissipated more rapidly from the silt loam soil as compared to the sandy soil. Average half-lives of SMZ and SPC among the two soils were 18.6 and 21.3 days, respectively. The presence of liquid swine slurry (5% v/w) decreased sulfonamide persistence in the silt loam soil. The lower persistence of the antimicrobials in liquid swine slurry-amended soil was likely due to higher microbial activity, as compared to unamended soil, and/or to the greater bioavailability of the sulfonamides to degrading microorganisms, as estimated by sorption isotherms. Concentrations of SMZ and SPC up to 100 microg g-1 had no effect on antimicrobial degradation rates and soil microorganisms. These studies suggest that higher sulfonamide concentrations would be necessary to affect the main processes controlling their environmental fates in soil, but at the concentrations normally found in the environment, there would be little or no effects.


Subject(s)
Anti-Infective Agents/analysis , Environment , Soil/analysis , Sulfonamides/analysis , Adsorption , Anti-Infective Agents/chemistry , Sulfamethazine/analysis , Sulfonamides/chemistry
4.
Microb Ecol ; 51(2): 220-31, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16463134

ABSTRACT

In an anthropogenically disturbed soil (88% sand, 8% silt, 4% clay), 150-mg samples were studied to examine the fine-scale relationship of bacterial activity and community structure to heavy metal contaminants. The soils had been contaminated for over 40 years with aromatic solvents, Pb, and Cr. Samples from distances of <1, 5, 15, and 50 cm over a depth range of 40-90 cm underwent a sequential analysis to determine metabolic potential (from 14C glucose mineralization), bacterial community structure [using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)], and total extractable Pb and Cr levels. Metabolic potential varied by as much as 10,000-fold in samples <1 cm apart; log-log plots of metal concentration and microbial metabolic potential showed no correlation with each other. Overall, metal concentrations ranged from 9 to 29,000 mg kg(-1) for Pb and from 3 to 8500 mg kg(-1) for Cr with small zones of high contamination present. All regions exhibited variable metal concentrations, with some soil samples having 30-fold differences in metal concentration in sites <1 cm apart. Geostatistical analysis revealed a strong spatial dependence for all three parameters tested (metabolic activity, Pb, and Cr levels) with a range up to 30 cm. Kriging maps showed that in zones of high metal, the corresponding metabolic activity was low suggesting that metals negatively impacted the microbial community. PCR-DGGE analysis revealed that diverse communities were present in the soils with a random distribution of phylotypes throughout the sampling zones. These results suggest the presence of spatially isolated microbial communities within the soil profile.


Subject(s)
Bacteria/isolation & purification , Ecosystem , Soil Microbiology , Soil Pollutants/analysis , Bacteria/classification , Bacteria/genetics , Chromium , Electrophoresis, Polyacrylamide Gel , Environmental Monitoring , Indiana , Lead , Polymerase Chain Reaction , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...