Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(2): 023602, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-32004012

ABSTRACT

Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes, and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phonon limited with an exponential temperature scaling leading to T_{1}>10 ms, and the coherence time, T_{2}^{*} reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications.

2.
Phys Rev Lett ; 122(11): 110601, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30951320

ABSTRACT

The ability of the internal states of a working fluid to be in a coherent superposition is one of the basic properties of a quantum heat engine. It was recently predicted that in the regime of small engine action, this ability can enable a quantum heat engine to produce more power than any equivalent classical heat engine. It was also predicted that in the same regime, the presence of such internal coherence causes different types of quantum heat engines to become thermodynamically equivalent. Here, we use an ensemble of nitrogen vacancy centers in diamond for implementing two types of quantum heat engines, and experimentally observe both effects.

3.
Phys Rev Lett ; 120(5): 053603, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29481176

ABSTRACT

The silicon-vacancy center in diamond offers attractive opportunities in quantum photonics due to its favorable optical properties and optically addressable electronic spin. Here, we combine both to achieve all-optical coherent control of its spin states. We utilize this method to explore spin dephasing effects in an impurity-rich sample beyond the limit of phonon-induced decoherence: Employing Ramsey and Hahn-echo techniques at temperatures down to 40 mK we identify resonant coupling to a substitutional nitrogen spin bath as limiting decoherence source for the electron spin.

4.
Nat Commun ; 8: 15579, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28555618

ABSTRACT

Spin impurities in diamond have emerged as a promising building block in a wide range of solid-state-based quantum technologies. The negatively charged silicon-vacancy centre combines the advantages of its high-quality photonic properties with a ground-state electronic spin, which can be read out optically. However, for this spin to be operational as a quantum bit, full quantum control is essential. Here we report the measurement of optically detected magnetic resonance and the demonstration of coherent control of a single silicon-vacancy centre spin with a microwave field. Using Ramsey interferometry, we directly measure a spin coherence time, T2*, of 115±9 ns at 3.6 K. The temperature dependence of coherence times indicates that dephasing and decay of the spin arise from single-phonon-mediated excitation between orbital branches of the ground state. Our results enable the silicon-vacancy centre spin to become a controllable resource to establish spin-photon quantum interfaces.

5.
Phys Rev Lett ; 112(3): 036405, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24484153

ABSTRACT

The negatively charged silicon vacancy (SiV) color center in diamond has recently proven its suitability for bright and stable single photon emission. However, its electronic structure so far has remained elusive. We here explore the electronic structure by exposing single SiV defects to a magnetic field where the Zeeman effect lifts the degeneracy of magnetic sublevels. The similar responses of single centers and a SiV ensemble in a low strain reference sample prove our ability to fabricate almost perfect single SiVs, revealing the true nature of the defect's electronic properties. We model the electronic states using a group-theoretical approach yielding a good agreement with the experimental observations. Furthermore, the model correctly predicts polarization measurements on single SiV centers and explains recently discovered spin selective excitation of SiV defects.

6.
Phys Rev Lett ; 113(26): 263601, 2014 Dec 31.
Article in English | MEDLINE | ID: mdl-25615329

ABSTRACT

Spin impurities in diamond can be versatile tools for a wide range of solid-state-based quantum technologies, but finding spin impurities that offer sufficient quality in both photonic and spin properties remains a challenge for this pursuit. The silicon-vacancy center has recently attracted much interest because of its spin-accessible optical transitions and the quality of its optical spectrum. Complementing these properties, spin coherence is essential for the suitability of this center as a spin-photon quantum interface. Here, we report all-optical generation of coherent superpositions of spin states in the ground state of a negatively charged silicon-vacancy center using coherent population trapping. Our measurements reveal a characteristic spin coherence time, T2*, exceeding 45 nanoseconds at 4 K. We further investigate the role of phonon-mediated coupling between orbital states as a source of irreversible decoherence. Our results indicate the feasibility of all-optical coherent control of silicon-vacancy spins using ultrafast laser pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...