Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 426(6968): 810-2, 2003 Dec 18.
Article in English | MEDLINE | ID: mdl-14685230

ABSTRACT

Gravitational lensing is a powerful tool for the study of the distribution of dark matter in the Universe. The cold-dark-matter model of the formation of large-scale structures (that is, clusters of galaxies and even larger assemblies) predicts the existence of quasars gravitationally lensed by concentrations of dark matter so massive that the quasar images would be split by over 7 arcsec. Numerous searches for large-separation lensed quasars have, however, been unsuccessful. All of the roughly 70 lensed quasars known, including the first lensed quasar discovered, have smaller separations that can be explained in terms of galaxy-scale concentrations of baryonic matter. Although gravitationally lensed galaxies with large separations are known, quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. Here we report the discovery of a lensed quasar, SDSS J1004 + 4112, which has a maximum separation between the components of 14.62 arcsec. Such a large separation means that the lensing object must be dominated by dark matter. Our results are fully consistent with theoretical expectations based on the cold-dark-matter model.

2.
Inorg Chem ; 42(24): 7938-44, 2003 Dec 01.
Article in English | MEDLINE | ID: mdl-14632511

ABSTRACT

The reaction of chlorine dioxide with excess NO(2)(-) to form ClO(2)(-) and NO(3)(-) in the presence of a large concentration of ClO(2)(-) is followed via stopped-flow spectroscopy. Concentrations are set to establish a preequilibrium among ClO(2), NO(2)(-), ClO(2)(-), and an intermediate, NO(2). Studies are conducted at pH 12.0 to avoid complications due to the ClO(2)(-)/NO(2)(-) reaction. These conditions enable the kinetic study of the ClO(2) reaction with nitrogen dioxide as well as the NO(2) disproportionation reaction. The rate of the NO(2)/ClO(2) electron-transfer reaction is accelerated by different nucleophiles (NO(2)(-) > Br(-) > OH(-) > CO(3)(2-) > PO(4)(3-) > ClO(2)(-) > H(2)O). The third-order rate constants for the nucleophile-assisted reactions between NO(2) and ClO(2) (k(Nu), M(-2) s(-1)) at 25.0 degrees C vary from 4.4 x 10(6) for NO(2-) to 2.0 x 10(3) when H(2)O is the nucleophile. The nucleophile is found to associate with NO(2) and not with ClO(2) in the rate-determining step to give NuNO(2)(+) + ClO(2)(-). The concurrent NO(2) disproportionation reaction exhibits no nucleophilic effect and has a rate constant of 4.8 x 10(7) M(-1) s(-1). The ClO(2)/NO(2)/nucleophile reaction is another example of a system that exhibits general nucleophilic acceleration of electron transfer. This system also represents an alternative way to study the rate of NO(2) disproportionation.

3.
Inorg Chem ; 41(11): 2975-80, 2002 Jun 03.
Article in English | MEDLINE | ID: mdl-12033908

ABSTRACT

Ozone reactions with XO(2)(-) (X = Cl or Br) are studied by stopped-flow spectroscopy under pseudo-first-order conditions with excess XO(2)(-). The O(3)/XO(2)(-) reactions are first-order in [O(3)] and [XO(2)(-)], with rate constants k(1)(Cl) = 8.2(4) x 10(6) M(-1) s(-1) and k(1)(Br) = 8.9(3) x 10(4) M(-1) s(-1) at 25.0 degrees C and mu = 1.0 M. The proposed rate-determining step is an electron transfer from XO(2)(-) to O(3) to form XO(2) and O(3)(-). Subsequent rapid reactions of O(3)(-) with general acids produce O(2) and OH. The OH radical reacts rapidly with XO(2)(-) to form a second XO(2) and OH(-). In the O(3)/ClO(2)(-) reaction, ClO(2) and ClO(3)(-) are the final products due to competition between the OH/ClO(2)(-) reaction to form ClO(2) and the OH/ClO(2) reaction to form ClO(3)(-). Unlike ClO(2), BrO(2) is not a stable product due to its rapid disproportionation to form BrO(2)(-) and BrO(3)(-). However, kinetic spectra show that small but observable concentrations of BrO(2) form within the dead time of the stopped-flow instrument. Bromine dioxide is a transitory intermediate, and its observed rate of decay is equal to half the rate of the O(3)/BrO(2)(-) reaction. Ion chromatographic analysis shows that O(3) and BrO(2)(-) react in a 1/1 ratio to form BrO(3)(-) as the final product. Variation of k(1)(X) values with temperature gives Delta H(++)(Cl) = 29(2) kJ mol(-1), DeltaS(++)(Cl) = -14.6(7) J mol(-1) K(-1), Delta H(++)(Br) = 54.9(8) kJ mol(-1), and Delta S(++)(Br) = 34(3) J mol(-1) K(-1). The positive Delta S(++)(Br) value is attributed to the loss of coordinated H(2)O from BrO(2)(-) upon formation of an [O(3)BrO(2)(-)](++) activated complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...