Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4791, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839754

ABSTRACT

The planum temporale (PT), a key language area, is specialized in the left hemisphere in prelinguistic infants and considered as a marker of the pre-wired language-ready brain. However, studies have reported a similar structural PT left-asymmetry not only in various adult non-human primates, but also in newborn baboons. Its shared functional links with language are not fully understood. Here we demonstrate using previously obtained MRI data that early detection of PT left-asymmetry among 27 newborn baboons (Papio anubis, age range of 4 days to 2 months) predicts the future development of right-hand preference for communicative gestures but not for non-communicative actions. Specifically, only newborns with a larger left-than-right PT were more likely to develop a right-handed communication once juvenile, a contralateral brain-gesture link which is maintained in a group of 70 mature baboons. This finding suggests that early PT asymmetry may be a common inherited prewiring of the primate brain for the ontogeny of ancient lateralised properties shared between monkey gesture and human language.


Subject(s)
Animals, Newborn , Functional Laterality , Gestures , Magnetic Resonance Imaging , Animals , Functional Laterality/physiology , Female , Male , Papio anubis , Temporal Lobe/physiology , Temporal Lobe/diagnostic imaging , Language
3.
Elife ; 112022 02 02.
Article in English | MEDLINE | ID: mdl-35108197

ABSTRACT

Manual gestures and speech recruit a common neural network, involving Broca's area in the left hemisphere. Such speech-gesture integration gave rise to theories on the critical role of manual gesturing in the origin of language. Within this evolutionary framework, research on gestural communication in our closer primate relatives has received renewed attention for investigating its potential language-like features. Here, using in vivo anatomical MRI in 50 baboons, we found that communicative gesturing is related to Broca homologue's marker in monkeys, namely the ventral portion of the Inferior Arcuate sulcus (IA sulcus). In fact, both direction and degree of gestural communication's handedness - but not handedness for object manipulation are associated and correlated with contralateral depth asymmetry at this exact IA sulcus portion. In other words, baboons that prefer to communicate with their right hand have a deeper left-than-right IA sulcus, than those preferring to communicate with their left hand and vice versa. Interestingly, in contrast to handedness for object manipulation, gestural communication's lateralisation is not associated to the Central sulcus depth asymmetry, suggesting a double dissociation of handedness' types between manipulative action and gestural communication. It is thus not excluded that this specific gestural lateralisation signature within the baboons' frontal cortex might reflect a phylogenetical continuity with language-related Broca lateralisation in humans.


Subject(s)
Animal Communication , Broca Area/physiology , Functional Laterality/physiology , Gestures , Papio anubis/physiology , Animals , Female , Humans , Language , Male
4.
Brain Struct Funct ; 227(2): 463-468, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33937939

ABSTRACT

The Planum temporale (PT) is one of the key hubs of the language network in the human brain. The gross asymmetry of this perisylvian region toward the left brain was considered as the most emblematic marker of hemispheric specialization of language processes in the brain. Interestingly, this neuroanatomical signature was documented also in newborn infants and preterms, suggesting the early brain's readiness for language acquisition. Nevertheless, this latter interpretation was questioned by a recent report in non-human primates of a potential similar signature in newborn baboons Papio anubis based on PT surface measures. Whether this "tip of the iceberg" PT asymmetry is actually reflecting asymmetry of its underlying grey matter volume remains unclear but critical to investigate potential continuities of cortical specialization with human infants. Here we report a population-level leftward asymmetry of the PT grey matter volume in in vivo 34 newborn baboons P. anubis, which showed intra-individual positive correlation with PT surface's asymmetry measures but also a more pronounced degree of leftward asymmetry at the population level. This finding demonstrates that PT leftward structural asymmetry in this Old World monkey species is a robust phenomenon in early primate development, which clearly speaks for a continuity with early human brain specialization. Results also strengthen the hypothesis that early PT asymmetry might be not a human-specific marker for the pre-wired language-ready brain in infants.


Subject(s)
Brain Mapping , Papio anubis , Animals , Functional Laterality , Gray Matter/diagnostic imaging , Haplorhini , Humans , Magnetic Resonance Imaging
5.
Neurosci Biobehav Rev ; 134: 104490, 2022 03.
Article in English | MEDLINE | ID: mdl-34914937

ABSTRACT

The Arcuate Fasciculus (AF) is of considerable interdisciplinary interest, because of its major implication in language processing. Theories about language brain evolution are based on anatomical differences in the AF across primates. However, changing methodologies and nomenclatures have resulted in conflicting findings regarding interspecies AF differences: Historical knowledge about the AF originated from human blunt dissections and later from monkey tract-tracing studies. Contemporary tractography studies reinvestigate the fasciculus' morphology, but remain heavily bound to unclear anatomical priors and methodological limitations. First, we aim to disentangle the influences of these three epistemological steps on existing AF conceptions, and to propose a contemporary model to guide future work. Second, considering the influence of various AF conceptions, we discuss four key evolutionary changes that propagated current views about language evolution: 1) frontal terminations, 2) temporal terminations, 3) greater Dorsal- versus Ventral Pathway expansion, 4) lateralisation. We conclude that new data point towards a more shared AF anatomy across primates than previously described. Language evolution theories should incorporate this more continuous AF evolution across primates.


Subject(s)
Language , White Matter , Animals , Brain Mapping/methods , Nerve Net , Neural Pathways/anatomy & histology
6.
Neuroimage ; 227: 117575, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33285330

ABSTRACT

The "language-ready" brain theory suggests that the infant brain is pre-wired for language acquisition prior to language exposure. As a potential brain marker of such a language readiness, a leftward structural brain asymmetry was found in human infants for the Planum Temporale (PT), which overlaps with Wernicke's area. In the present longitudinal in vivo MRI study conducted in 35 newborn monkeys (Papio anubis), we found a similar leftward PT surface asymmetry. Follow-up rescanning sessions on 29 juvenile baboons at 7-10 months showed that such an asymmetry increases across the two ages classes. These original findings in non-linguistic primate infants strongly question the idea that the early PT asymmetry constitutes a human infant-specific marker for language development. Such a shared early perisylvian organization provides additional support that PT asymmetry might be related to a lateralized system inherited from our last common ancestor with Old-World monkeys at least 25-35 million years ago.


Subject(s)
Functional Laterality/physiology , Temporal Lobe/diagnostic imaging , Aging/physiology , Animals , Animals, Newborn , Brain Mapping , Female , Language , Longitudinal Studies , Magnetic Resonance Imaging , Male , Papio anubis , Temporal Lobe/growth & development
7.
PLoS One ; 12(1): e0169321, 2017.
Article in English | MEDLINE | ID: mdl-28076426

ABSTRACT

Language is a distinguishing characteristic of our species, and the course of its evolution is one of the hardest problems in science. It has long been generally considered that human speech requires a low larynx, and that the high larynx of nonhuman primates should preclude their producing the vowel systems universally found in human language. Examining the vocalizations through acoustic analyses, tongue anatomy, and modeling of acoustic potential, we found that baboons (Papio papio) produce sounds sharing the F1/F2 formant structure of the human [ɨ æ ɑ ɔ u] vowels, and that similarly with humans those vocalic qualities are organized as a system on two acoustic-anatomic axes. This confirms that hominoids can produce contrasting vowel qualities despite a high larynx. It suggests that spoken languages evolved from ancient articulatory skills already present in our last common ancestor with Cercopithecoidea, about 25 MYA.


Subject(s)
Biological Evolution , Papio/physiology , Speech Acoustics , Speech/physiology , Vocalization, Animal/physiology , Animals , Female , Humans , Larynx/anatomy & histology , Larynx/physiology , Male , Muscles/physiology , Papio/anatomy & histology , Phonetics , Tongue/anatomy & histology , Tongue/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...