Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Blood Adv ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713894

ABSTRACT

Personalized cancer vaccines designed to target neoantigens represent a promising new treatment paradigm in oncology. In contrast to classical idiotype vaccines, we hypothesized that 'polyvalent' vaccines could be engineered for the personalized treatment of follicular lymphoma (FL) using neoantigen discovery by combined whole exome sequencing (WES) and RNA sequencing (RNA-Seq). Fifty-eight tumor samples from 57 patients with FL underwent WES and RNA-Seq. Somatic and B-cell clonotype neoantigens were predicted and filtered to identify high-quality neoantigens. B-cell clonality was determined by alignment of B-cell receptor (BCR) CDR3 regions from RNA-Seq data, grouping at the protein level, and comparison to the BCR repertoire from healthy individuals using RNA-Seq data. An average of 52 somatic mutations per patient (range: 2-172) were identified, and two or more (median: 15) high-quality neoantigens were predicted for 56 of 58 FL samples. The predicted neoantigen peptides were composed of missense mutations (77%), indels (9%), gene fusions (3%), and BCR sequences (11%). Building off of these preclinical analyses, we initiated a pilot clinical trial using personalized neoantigen vaccination combined with PD-1 blockade in patients with relapsed or refractory FL (#NCT03121677). Synthetic long peptide (SLP) vaccines targeting predicted high-quality neoantigens were successfully synthesized for and administered to all four patients enrolled. Initial results demonstrate feasibility, safety, and potential immunologic and clinical responses. Our study suggests that a genomics-driven personalized cancer vaccine strategy is feasible for patients with FL, and this may overcome prior challenges in the field.

2.
J Clin Invest ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805302

ABSTRACT

The surface receptor CD8α is present on 20-80% of human (but not mouse) NK cells, yet its function on NK cells remains poorly understood. CD8α expression on donor NK cells was associated with a lack of therapeutic responses for leukemia patients in prior studies, thus we hypothesized that CD8α may impact critical NK cell functions. Here, we discovered that CD8α- NK cells had improved control of leukemia in xenograft models, compared to CD8α+ NK cells, likely due to an enhanced capacity for proliferation. Unexpectedly, CD8α expression was induced on approximately 30% of previously CD8α- NK cells following IL-15 stimulation. These 'induced' CD8α+ ('iCD8α+') NK cells had the greatest proliferation, responses to IL-15 signaling, and metabolic activity, compared to those that sustained existing CD8α expression ('sustained CD8α+) or those that remained CD8α- ('persistent CD8α-'). These iCD8α+ cells originated from an IL-15Rß high NK cell population, with CD8α expression dependent on the transcription factor RUNX3. Moreover, CD8A CRISPR/Cas9 deletion resulted in enhanced responses through the activating receptor NKp30, possibly by modulating KIR inhibitory function. Thus, CD8α status identifies human NK cell capacity for IL-15-induced proliferation and metabolism in a time-dependent fashion and exhibits a suppressive effect on NK cell activating receptors.

3.
Oncoimmunology ; 13(1): 2348254, 2024.
Article in English | MEDLINE | ID: mdl-38737793

ABSTRACT

Metastatic (m) colorectal cancer (CRC) is an incurable disease with a poor prognosis and thus remains an unmet clinical need. Immune checkpoint blockade (ICB)-based immunotherapy is effective for mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) mCRC patients, but it does not benefit the majority of mCRC patients. NK cells are innate lymphoid cells with potent effector responses against a variety of tumor cells but are frequently dysfunctional in cancer patients. Memory-like (ML) NK cells differentiated after IL-12/IL-15/IL-18 activation overcome many challenges to effective NK cell anti-tumor responses, exhibiting enhanced recognition, function, and in vivo persistence. We hypothesized that ML differentiation enhances the NK cell responses to CRC. Compared to conventional (c) NK cells, ML NK cells displayed increased IFN-γ production against both CRC cell lines and primary patient-derived CRC spheroids. ML NK cells also exhibited improved killing of CRC target cells in vitro in short-term and sustained cytotoxicity assays, as well as in vivo in NSG mice. Mechanistically, enhanced ML NK cell responses were dependent on the activating receptor NKG2D as its blockade significantly decreased ML NK cell functions. Compared to cNK cells, ML NK cells exhibited greater antibody-dependent cytotoxicity when targeted against CRC by cetuximab. ML NK cells from healthy donors and mCRC patients exhibited increased anti-CRC responses. Collectively, our findings demonstrate that ML NK cells exhibit enhanced responses against CRC targets, warranting further investigation in clinical trials for mCRC patients, including those who have failed ICB.


Subject(s)
Cell Differentiation , Colorectal Neoplasms , Immunologic Memory , Killer Cells, Natural , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Humans , Animals , Mice , Cell Differentiation/drug effects , Cell Line, Tumor , Interferon-gamma/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Mice, Inbred NOD , Female
4.
Clin Cancer Res ; 29(20): 4196-4208, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37556118

ABSTRACT

PURPOSE: Head and neck squamous cell carcinoma (HNSCC) is an aggressive tumor with low response rates to frontline PD-1 blockade. Natural killer (NK) cells are a promising cellular therapy for T cell therapy-refractory cancers, but are frequently dysfunctional in patients with HNSCC. Strategies are needed to enhance NK cell responses against HNSCC. We hypothesized that memory-like (ML) NK cell differentiation, tumor targeting with cetuximab, and engineering with an anti-EphA2 (Erythropoietin-producing hepatocellular receptor A2) chimeric antigen receptor (CAR) enhance NK cell responses against HNSCC. EXPERIMENTAL DESIGN: We generated ML NK and conventional (c)NK cells from healthy donors, then evaluated their ability to produce IFNγ, TNF, degranulate, and kill HNSCC cell lines and primary HNSCC cells, alone or in combination with cetuximab, in vitro and in vivo using xenograft models. ML and cNK cells were engineered to express anti-EphA2 CAR-CD8A-41BB-CD3z, and functional responses were assessed in vitro against HNSCC cell lines and primary HNSCC tumor cells. RESULTS: Human ML NK cells displayed enhanced IFNγ and TNF production and both short- and long-term killing of HNSCC cell lines and primary targets, compared with cNK cells. These enhanced responses were further improved by cetuximab. Compared with controls, ML NK cells expressing anti-EphA2 CAR had increased IFNγ and cytotoxicity in response to EphA2+ cell lines and primary HNSCC targets. CONCLUSIONS: These preclinical findings demonstrate that ML differentiation alone or coupled with either cetuximab-directed targeting or EphA2 CAR engineering were effective against HNSCCs and provide the rationale for investigating these combination approaches in early phase clinical trials for patients with HNSCC.


Subject(s)
Head and Neck Neoplasms , Receptors, Chimeric Antigen , Humans , Cetuximab/pharmacology , Cetuximab/therapeutic use , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Cell Line, Tumor , Killer Cells, Natural , Head and Neck Neoplasms/drug therapy , Antibodies, Monoclonal/metabolism , Cell Differentiation
5.
J Clin Invest ; 133(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37279078

ABSTRACT

Since the T-box transcription factors (TFs) T-BET and EOMES are necessary for initiation of NK cell development, their ongoing requirement for mature NK cell homeostasis, function, and molecular programming remains unclear. To address this, T-BET and EOMES were deleted in unexpanded primary human NK cells using CRISPR/Cas9. Deleting these TFs compromised in vivo antitumor response of human NK cells. Mechanistically, T-BET and EOMES were required for normal NK cell proliferation and persistence in vivo. NK cells lacking T-BET and EOMES also exhibited defective responses to cytokine stimulation. Single-cell RNA-Seq revealed a specific T-box transcriptional program in human NK cells, which was rapidly lost following T-BET and EOMES deletion. Further, T-BET- and EOMES-deleted CD56bright NK cells acquired an innate lymphoid cell precursor-like (ILCP-like) profile with increased expression of the ILC-3-associated TFs RORC and AHR, revealing a role for T-box TFs in maintaining mature NK cell phenotypes and an unexpected role of suppressing alternative ILC lineages. Our study reveals the critical importance of sustained EOMES and T-BET expression to orchestrate mature NK cell function and identity.


Subject(s)
Immunity, Innate , T-Box Domain Proteins , Humans , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Killer Cells, Natural/metabolism , Transcription Factors/metabolism , Cytokines/metabolism
6.
Sci Immunol ; 8(82): eabg2200, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37027480

ABSTRACT

Neoantigens are tumor-specific peptide sequences resulting from sources such as somatic DNA mutations. Upon loading onto major histocompatibility complex (MHC) molecules, they can trigger recognition by T cells. Accurate neoantigen identification is thus critical for both designing cancer vaccines and predicting response to immunotherapies. Neoantigen identification and prioritization relies on correctly predicting whether the presenting peptide sequence can successfully induce an immune response. Because most somatic mutations are single-nucleotide variants, changes between wild-type and mutated peptides are typically subtle and require cautious interpretation. A potentially underappreciated variable in neoantigen prediction pipelines is the mutation position within the peptide relative to its anchor positions for the patient's specific MHC molecules. Whereas a subset of peptide positions are presented to the T cell receptor for recognition, others are responsible for anchoring to the MHC, making these positional considerations critical for predicting T cell responses. We computationally predicted anchor positions for different peptide lengths for 328 common HLA alleles and identified unique anchoring patterns among them. Analysis of 923 tumor samples shows that 6 to 38% of neoantigen candidates are potentially misclassified and can be rescued using allele-specific knowledge of anchor positions. A subset of anchor results were orthogonally validated using protein crystallography structures. Representative anchor trends were experimentally validated using peptide-MHC stability assays and competition binding assays. By incorporating our anchor prediction results into neoantigen prediction pipelines, we hope to formalize, streamline, and improve the identification process for relevant clinical studies.


Subject(s)
Antigens, Neoplasm , Neoplasms , Humans , Antigens, Neoplasm/genetics , T-Lymphocytes , Mutation , Peptides/genetics
7.
Mol Ther Oncolytics ; 24: 585-596, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35284622

ABSTRACT

Natural killer (NK) cells are cytotoxic innate lymphoid cells that are emerging as a cellular immunotherapy for various malignancies. NK cells are particularly dependent on interleukin (IL)-15 for their survival, proliferation, and cytotoxic function. NK cells differentiate into memory-like cells with enhanced effector function after a brief activation with IL-12, IL-15, and IL-18. N-803 is an IL-15 superagonist composed of an IL-15 mutant (IL-15N72D) bound to the sushi domain of IL-15Rα fused to the Fc region of IgG1, which results in physiological trans-presentation of IL-15. Here, we describe the creation of a novel triple-cytokine fusion molecule, 18/12/TxM, using the N-803 scaffold fused to IL-18 via the IL-15N72D domain and linked to a heteromeric single-chain IL-12 p70 by the sushi domain of the IL-15Rα. This molecule displays trispecific cytokine activity through its binding and signaling through the individual cytokine receptors. Compared with activation with the individual cytokines, 18/12/TxM induces similar short-term activation and memory-like differentiation of NK cells on both the transcriptional and protein level and identical in vitro and in vivo anti-tumor activity. Thus, N-803 can be modified as a functional scaffold for the creation of cytokine immunotherapies with multiple receptor specificities to activate NK cells for adoptive cellular therapy.

8.
Sci Transl Med ; 14(633): eabm1375, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196021

ABSTRACT

Natural killer (NK) cells are innate lymphoid cells that eliminate cancer cells, produce cytokines, and are being investigated as a nascent cellular immunotherapy. Impaired NK cell function, expansion, and persistence remain key challenges for optimal clinical translation. One promising strategy to overcome these challenges is cytokine-induced memory-like (ML) differentiation, whereby NK cells acquire enhanced antitumor function after stimulation with interleukin-12 (IL-12), IL-15, and IL-18. Here, reduced-intensity conditioning (RIC) for HLA-haploidentical hematopoietic cell transplantation (HCT) was augmented with same-donor ML NK cells on day +7 and 3 weeks of N-803 (IL-15 superagonist) to treat patients with relapsed/refractory acute myeloid leukemia (AML) in a clinical trial (NCT02782546). In 15 patients, donor ML NK cells were well tolerated, and 87% of patients achieved a composite complete response at day +28, which corresponded with clearing high-risk mutations, including TP53 variants. NK cells were the major blood lymphocytes for 2 months after HCT with 1104-fold expansion (over 1 to 2 weeks). Phenotypic and transcriptional analyses identified donor ML NK cells as distinct from conventional NK cells and showed that ML NK cells persisted for over 2 months. ML NK cells expressed CD16, CD57, and high granzyme B and perforin, along with a unique transcription factor profile. ML NK cells differentiated in patients had enhanced ex vivo function compared to conventional NK cells from both patients and healthy donors. Overall, same-donor ML NK cell therapy with 3 weeks of N-803 support safely augmented RIC haplo-HCT for AML.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Immunity, Innate , Interleukin-15 , Killer Cells, Natural , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy
9.
Blood ; 139(8): 1177-1183, 2022 02 24.
Article in English | MEDLINE | ID: mdl-34797911

ABSTRACT

Natural killer (NK) cells are a promising alternative to T cells for cancer immunotherapy. Adoptive therapies with allogeneic, cytokine-activated NK cells are being investigated in clinical trials. However, the optimal cytokine support after adoptive transfer to promote NK cell expansion, and persistence remains unclear. Correlative studies from 2 independent clinical trial cohorts treated with major histocompatibility complex-haploidentical NK cell therapy for relapsed/refractory acute myeloid leukemia revealed that cytokine support by systemic interleukin-15 (IL-15; N-803) resulted in reduced clinical activity, compared with IL-2. We hypothesized that the mechanism responsible was IL-15/N-803 promoting recipient CD8 T-cell activation that in turn accelerated donor NK cell rejection. This idea was supported by increased proliferating CD8+ T-cell numbers in patients treated with IL-15/N-803, compared with IL-2. Moreover, mixed lymphocyte reactions showed that IL-15/N-803 enhanced responder CD8 T-cell activation and proliferation, compared with IL-2 alone. Additionally, IL-15/N-803 accelerated the ability of responding T cells to kill stimulator-derived memory-like NK cells, demonstrating that additional IL-15 can hasten donor NK cell elimination. Thus, systemic IL-15 used to support allogeneic cell therapy may paradoxically limit their therapeutic window of opportunity and clinical activity. This study indicates that stimulating patient CD8 T-cell allo-rejection responses may critically limit allogeneic cellular therapy supported with IL-15. This trial was registered at www.clinicaltrials.gov as #NCT03050216 and #NCT01898793.


Subject(s)
Antineoplastic Agents/administration & dosage , CD8-Positive T-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Interleukin-15/administration & dosage , Killer Cells, Natural/transplantation , Leukemia, Myeloid, Acute , Recombinant Fusion Proteins/administration & dosage , Allogeneic Cells/immunology , Female , Humans , Interleukin-15/immunology , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , Male
10.
Blood ; 139(13): 1999-2010, 2022 03 31.
Article in English | MEDLINE | ID: mdl-34780623

ABSTRACT

New therapies are needed for patients with relapsed/refractory (rel/ref) diffuse large B-cell lymphoma (DLBCL) who do not benefit from or are ineligible for stem cell transplant and chimeric antigen receptor therapy. The CD30-targeted, antibody-drug conjugate brentuximab vedotin (BV) and the immunomodulator lenalidomide (Len) have demonstrated promising activity as single agents in this population. We report the results of a phase 1/dose expansion trial evaluating the combination of BV/Len in rel/ref DLBCL. Thirty-seven patients received BV every 21 days, with Len administered continuously for a maximum of 16 cycles. The maximum tolerated dose of the combination was 1.2 mg/kg BV with 20 mg/d Len. BV/Len was well tolerated with a toxicity profile consistent with their use as single agents. Most patients required granulocyte colony-stimulating factor support because of neutropenia. The overall response rate was 57% (95% CI, 39.6-72.5), complete response rate, 35% (95% CI, 20.7-52.6); median duration of response, 13.1 months; median progression-free survival, 10.2 months (95% CI, 5.5-13.7); and median overall survival, 14.3 months (95% CI, 10.2-35.6). Response rates were highest in patients with CD30+ DLBCL (73%), but they did not differ according to cell of origin (P = .96). NK cell expansion and phenotypic changes in CD8+ T-cell subsets in nonresponders were identified by mass cytometry. BV/Len represents a potential treatment option for patients with rel/ref DLBCL. This combination is being further explored in a phase 3 study (registered on https://clinicaltrials.org as NCT04404283). This trial was registered on https://clinicaltrials.gov as NCT02086604.


Subject(s)
Brentuximab Vedotin , Lenalidomide , Lymphoma, Large B-Cell, Diffuse , Brentuximab Vedotin/adverse effects , Humans , Immunoconjugates/adverse effects , Lenalidomide/adverse effects , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Neoplasm Recurrence, Local/drug therapy , Treatment Outcome
11.
Blood ; 139(11): 1670-1683, 2022 03 17.
Article in English | MEDLINE | ID: mdl-34871371

ABSTRACT

Pediatric and young adult (YA) patients with acute myeloid leukemia (AML) who relapse after allogeneic hematopoietic cell transplantation (HCT) have an extremely poor prognosis. Standard salvage chemotherapy and donor lymphocyte infusions (DLIs) have little curative potential. Previous studies showed that natural killer (NK) cells can be stimulated ex vivo with interleukin-12 (IL-12), -15, and -18 to generate memory-like (ML) NK cells with enhanced antileukemia responses. We treated 9 pediatric/YA patients with post-HCT relapsed AML with donor ML NK cells in a phase 1 trial. Patients received fludarabine, cytarabine, and filgrastim followed 2 weeks later by infusion of donor lymphocytes and ML NK cells from the original HCT donor. ML NK cells were successfully generated from haploidentical and matched-related and -unrelated donors. After infusion, donor-derived ML NK cells expanded and maintained an ML multidimensional mass cytometry phenotype for >3 months. Furthermore, ML NK cells exhibited persistent functional responses as evidenced by leukemia-triggered interferon-γ production. After DLI and ML NK cell adoptive transfer, 4 of 8 evaluable patients achieved complete remission at day 28. Two patients maintained a durable remission for >3 months, with 1 patient in remission for >2 years. No significant toxicity was experienced. This study demonstrates that, in a compatible post-HCT immune environment, donor ML NK cells robustly expand and persist with potent antileukemic activity in the absence of exogenous cytokines. ML NK cells in combination with DLI present a novel immunotherapy platform for AML that has relapsed after allogeneic HCT. This trial was registered at https://clinicaltrials.gov as #NCT03068819.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Child , Hematopoietic Stem Cell Transplantation/methods , Humans , Killer Cells, Natural , Leukemia, Myeloid, Acute/therapy , Transplantation, Homologous , Unrelated Donors
12.
Cancer Immunol Res ; 9(9): 1071-1087, 2021 09.
Article in English | MEDLINE | ID: mdl-34244297

ABSTRACT

Natural killer (NK) cells are a promising cellular therapy for cancer, with challenges in the field including persistence, functional activity, and tumor recognition. Briefly, priming blood NK cells with recombinant human (rh)IL-12, rhIL-15, and rhIL-18 (12/15/18) results in memory-like NK cell differentiation and enhanced responses against cancer. However, the lack of available, scalable Good Manufacturing Process (GMP)-grade reagents required to advance this approach beyond early-phase clinical trials is limiting. To address this challenge, we developed a novel platform centered upon an inert tissue factor scaffold for production of heteromeric fusion protein complexes (HFPC). The first use of this platform combined IL-12, IL-15, and IL-18 receptor engagement (HCW9201), and the second adds CD16 engagement (HCW9207). This unique HFPC expression platform was scalable with equivalent protein quality characteristics in small- and GMP-scale production. HCW9201 and HCW9207 stimulated activation and proliferation signals in NK cells, but HCW9207 had decreased IL-18 receptor signaling. RNA sequencing and multidimensional mass cytometry revealed parallels between HCW9201 and 12/15/18. HCW9201 stimulation improved NK cell metabolic fitness and resulted in the DNA methylation remodeling characteristic of memory-like differentiation. HCW9201 and 12/15/18 primed similar increases in short-term and memory-like NK cell cytotoxicity and IFNγ production against leukemia targets, as well as equivalent control of leukemia in NSG mice. Thus, HFPCs represent a protein engineering approach that solves many problems associated with multisignal receptor engagement on immune cells, and HCW9201-primed NK cells can be advanced as an ideal approach for clinical GMP-grade memory-like NK cell production for cancer therapy.


Subject(s)
Interleukin-12/pharmacology , Interleukin-15/pharmacology , Interleukin-18/pharmacology , Killer Cells, Natural/immunology , Leukemia/therapy , Animals , Cell Line, Tumor , Humans , Immunologic Memory/drug effects , Leukemia/immunology , Mice , Receptors, Natural Killer Cell/metabolism , Recombinant Fusion Proteins/pharmacology , Remission Induction , Xenograft Model Antitumor Assays
13.
Clin Cancer Res ; 27(17): 4859-4869, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34187852

ABSTRACT

PURPOSE: Treatment of advanced melanoma is a clinical challenge. Natural killer (NK) cells are a promising cellular therapy for T cell-refractory cancers, but are frequently deficient or dysfunctional in patients with melanoma. Thus, new strategies are needed to enhance NK-cell antitumor responses. Cytokine-induced memory-like (ML) differentiation overcomes many barriers in the NK-cell therapeutics field, resulting in potent cytotoxicity and enhanced cytokine production against blood cancer targets. However, the preclinical activity of ML NK against solid tumors remains largely undefined. EXPERIMENTAL DESIGN: Phenotypic and functional alterations of blood and advanced melanoma infiltrating NK cells were evaluated using mass cytometry. ML NK cells from healthy donors (HD) and patients with advanced melanoma were evaluated for their ability to produce IFNγ and kill melanoma targets in vitro and in vivo using a xenograft model. RESULTS: NK cells in advanced melanoma exhibited a decreased cytotoxic potential compared with blood NK cells. ML NK cells differentiated from HD and patients with advanced melanoma displayed enhanced IFNγ production and cytotoxicity against melanoma targets. This included ML differentiation enhancing melanoma patients' NK-cell responses against autologous targets. The ML NK-cell response against melanoma was partially dependent on the NKG2D- and NKp46-activating receptors. Furthermore, in xenograft NSG mouse models, human ML NK cells demonstrated superior control of melanoma, compared with conventional NK cells. CONCLUSIONS: Blood NK cells from allogeneic HD or patients with advanced melanoma can be differentiated into ML NK cells for use as a novel immunotherapeutic treatment for advanced melanoma, which warrants testing in early-phase clinical trials.


Subject(s)
Cell Differentiation/immunology , Immunologic Memory , Killer Cells, Natural/immunology , Melanoma/immunology , Animals , Humans , Mice , Tumor Cells, Cultured
14.
Clin Cancer Res ; 27(13): 3744-3756, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33986022

ABSTRACT

PURPOSE: Natural killer (NK)-cell recognition and function against NK-resistant cancers remain substantial barriers to the broad application of NK-cell immunotherapy. Potential solutions include bispecific engagers that target NK-cell activity via an NK-activating receptor when simultaneously targeting a tumor-specific antigen, as well as enhancing functionality using IL12/15/18 cytokine pre-activation. EXPERIMENTAL DESIGN: We assessed single-cell NK-cell responses stimulated by the tetravalent bispecific antibody AFM13 that binds CD30 on leukemia/lymphoma targets and CD16A on various types of NK cells using mass cytometry and cytotoxicity assays. The combination of AFM13 and IL12/15/18 pre-activation of blood and cord blood-derived NK cells was investigated in vitro and in vivo. RESULTS: We found heterogeneity within AFM13-directed conventional blood NK cell (cNK) responses, as well as consistent AFM13-directed polyfunctional activation of mature NK cells across donors. NK-cell source also impacted the AFM13 response, with cNK cells from healthy donors exhibiting superior responses to those from patients with Hodgkin lymphoma. IL12/15/18-induced memory-like NK cells from peripheral blood exhibited enhanced killing of CD30+ lymphoma targets directed by AFM13, compared with cNK cells. Cord-blood NK cells preactivated with IL12/15/18 and ex vivo expanded with K562-based feeders also exhibited enhanced killing with AFM13 stimulation via upregulation of signaling pathways related to NK-cell effector function. AFM13-NK complex cells exhibited enhanced responses to CD30+ lymphomas in vitro and in vivo. CONCLUSIONS: We identify AFM13 as a promising combination with cytokine-activated adult blood or cord-blood NK cells to treat CD30+ hematologic malignancies, warranting clinical trials with these novel combinations.


Subject(s)
Antibodies, Bispecific , Immunotherapy , Killer Cells, Natural , Leukemia , Lymphoma , Humans , Antibodies, Bispecific/therapeutic use , Blood/drug effects , Blood/immunology , Cells, Cultured , Combined Modality Therapy , Cytokines/pharmacology , Fetal Blood/drug effects , Fetal Blood/immunology , Immunotherapy/methods , Ki-1 Antigen/immunology , Killer Cells, Natural/immunology , Leukemia/therapy , Lymphoma/therapy , Receptors, IgG/immunology
15.
Genome Med ; 13(1): 56, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33879241

ABSTRACT

BACKGROUND: Preclinical studies and early clinical trials have shown that targeting cancer neoantigens is a promising approach towards the development of personalized cancer immunotherapies. DNA vaccines can be rapidly and efficiently manufactured and can integrate multiple neoantigens simultaneously. We therefore sought to optimize the design of polyepitope DNA vaccines and test optimized polyepitope neoantigen DNA vaccines in preclinical models and in clinical translation. METHODS: We developed and optimized a DNA vaccine platform to target multiple neoantigens. The polyepitope DNA vaccine platform was first optimized using model antigens in vitro and in vivo. We then identified neoantigens in preclinical breast cancer models through genome sequencing and in silico neoantigen prediction pipelines. Optimized polyepitope neoantigen DNA vaccines specific for the murine breast tumor E0771 and 4T1 were designed and their immunogenicity was tested in vivo. We also tested an optimized polyepitope neoantigen DNA vaccine in a patient with metastatic pancreatic neuroendocrine tumor. RESULTS: Our data support an optimized polyepitope neoantigen DNA vaccine design encoding long (≥20-mer) epitopes with a mutant form of ubiquitin (Ubmut) fused to the N-terminus for antigen processing and presentation. Optimized polyepitope neoantigen DNA vaccines were immunogenic and generated robust neoantigen-specific immune responses in mice. The magnitude of immune responses generated by optimized polyepitope neoantigen DNA vaccines was similar to that of synthetic long peptide vaccines specific for the same neoantigens. When combined with immune checkpoint blockade therapy, optimized polyepitope neoantigen DNA vaccines were capable of inducing antitumor immunity in preclinical models. Immune monitoring data suggest that optimized polyepitope neoantigen DNA vaccines are capable of inducing neoantigen-specific T cell responses in a patient with metastatic pancreatic neuroendocrine tumor. CONCLUSIONS: We have developed and optimized a novel polyepitope neoantigen DNA vaccine platform that can target multiple neoantigens and induce antitumor immune responses in preclinical models and neoantigen-specific responses in clinical translation.


Subject(s)
Antigens, Neoplasm/immunology , Epitopes/immunology , Immunity , Translational Research, Biomedical , Vaccines, DNA/immunology , Adult , Animals , Antigen Presentation/immunology , Cell Proliferation , Disease Models, Animal , Female , HeLa Cells , Humans , Immune Checkpoint Inhibitors , Immunotherapy , Male , Mammary Neoplasms, Animal/pathology , Mice, Inbred C57BL , Neoplasm Metastasis , Neuroendocrine Tumors/immunology , Neuroendocrine Tumors/pathology , Peptides/immunology , T-Lymphocytes/immunology
16.
Clin Cancer Res ; 27(12): 3339-3350, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33832946

ABSTRACT

PURPOSE: N-803 is an IL15 receptor superagonist complex, designed to optimize in vivo persistence and trans-presentation, thereby activating and expanding natural killer (NK) cells and CD8+ T cells. Monoclonal antibodies (mAbs) direct Fc receptor-bearing immune cells, including NK cells, to recognize and eliminate cancer targets. The ability of IL15R agonists to enhance tumor-targeting mAbs in patients has not been reported previously. PATIENTS AND METHODS: Relapsed/refractory patients with indolent non-Hodgkin lymphoma were treated with rituximab and intravenous or subcutaneous N-803 on an open-label, dose-escalation phase I study using a 3+3 design (NCT02384954). Primary endpoint was maximum tolerated dose. Immune correlates were performed using multidimensional analysis via mass cytometry and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) which simultaneously measures protein and single-cell RNA expression. RESULTS: This immunotherapy combination was safe and well tolerated and resulted in durable clinical responses including in rituximab-refractory patients. Subcutaneous N-803 plus rituximab induced sustained proliferation, expansion, and activation of peripheral blood NK cells and CD8 T cells, with increased NK cell and T cells present 8 weeks following last N-803 treatment. CITE-seq revealed a therapy-altered NK cell molecular program, including enhancement of AP-1 transcription factor. Furthermore, the monocyte transcriptional program was remodeled with enhanced MHC expression and antigen-presentation genes. CONCLUSIONS: N-803 combines with mAbs to enhance tumor targeting in patients, and warrants further investigation in combination with immunotherapies.


Subject(s)
Interleukin-15 , Lymphoma, Non-Hodgkin , Antineoplastic Combined Chemotherapy Protocols/adverse effects , CD8-Positive T-Lymphocytes/pathology , Humans , Interleukin-15/therapeutic use , Lymphoma, Non-Hodgkin/pathology , Recombinant Fusion Proteins , Rituximab
17.
Cancer Discov ; 10(12): 1854-1871, 2020 12.
Article in English | MEDLINE | ID: mdl-32826231

ABSTRACT

Natural killer (NK) cells are an emerging cancer cellular therapy and potent mediators of antitumor immunity. Cytokine-induced memory-like (ML) NK cellular therapy is safe and induces remissions in patients with acute myeloid leukemia (AML). However, the dynamic changes in phenotype that occur after NK-cell transfer that affect patient outcomes remain unclear. Here, we report comprehensive multidimensional correlates from ML NK cell-treated patients with AML using mass cytometry. These data identify a unique in vivo differentiated ML NK-cell phenotype distinct from conventional NK cells. Moreover, the inhibitory receptor NKG2A is a dominant, transcriptionally induced checkpoint important for ML, but not conventional NK-cell responses to cancer. The frequency of CD8α+ donor NK cells is negatively associated with AML patient outcomes after ML NK therapy. Thus, elucidating the multidimensional dynamics of donor ML NK cells in vivo revealed critical factors important for clinical response, and new avenues to enhance NK-cell therapeutics. SIGNIFICANCE: Mass cytometry reveals an in vivo memory-like NK-cell phenotype, where NKG2A is a dominant checkpoint, and CD8α is associated with treatment failure after ML NK-cell therapy. These findings identify multiple avenues for optimizing ML NK-cell immunotherapy for cancer and define mechanisms important for ML NK-cell function.This article is highlighted in the In This Issue feature, p. 1775.


Subject(s)
Immunotherapy, Adoptive/methods , Killer Cells, Natural/metabolism , Leukemia, Myeloid, Acute/genetics , Humans , Leukemia, Myeloid, Acute/pathology
18.
Proc Natl Acad Sci U S A ; 116(47): 23662-23670, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31685621

ABSTRACT

The impact of intratumoral heterogeneity (ITH) and the resultant neoantigen landscape on T cell immunity are poorly understood. ITH is a widely recognized feature of solid tumors and poses distinct challenges related to the development of effective therapeutic strategies, including cancer neoantigen vaccines. Here, we performed deep targeted DNA sequencing of multiple metastases from melanoma patients and observed ubiquitous sharing of clonal and subclonal single nucleotide variants (SNVs) encoding putative HLA class I-restricted neoantigen epitopes. However, spontaneous antitumor CD8+ T cell immunity in peripheral blood and tumors was restricted to a few clonal neoantigens featuring an oligo-/monoclonal T cell-receptor (TCR) repertoire. Moreover, in various tumors of the 4 patients examined, no neoantigen-specific TCR clonotypes were identified despite clonal neoantigen expression. Mature dendritic cell (mDC) vaccination with tumor-encoded amino acid-substituted (AAS) peptides revealed diverse neoantigen-specific CD8+ T responses, each composed of multiple TCR clonotypes. Isolation of T cell clones by limiting dilution from tumor-infiltrating lymphocytes (TILs) permitted functional validation regarding neoantigen specificity. Gene transfer of TCRαß heterodimers specific for clonal neoantigens confirmed correct TCR clonotype assignments based on high-throughput TCRBV CDR3 sequencing. Our findings implicate immunological ignorance of clonal neoantigens as the basis for ineffective T cell immunity to melanoma and support the concept that therapeutic vaccination, as an adjunct to checkpoint inhibitor treatment, is required to increase the breadth and diversity of neoantigen-specific CD8+ T cells.


Subject(s)
Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/immunology , T-Lymphocyte Subsets/immunology , Amino Acid Substitution , Antigens, Neoplasm/genetics , Cancer Vaccines/immunology , Clone Cells , DNA, Neoplasm/genetics , Dendritic Cells/immunology , HLA Antigens/immunology , Humans , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Melanoma/genetics , Melanoma/secondary , Polymorphism, Single Nucleotide , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Retroperitoneal Neoplasms/immunology , Retroperitoneal Neoplasms/secondary , Sequence Analysis, DNA , T-Cell Antigen Receptor Specificity , Tumor Escape , Vaccination
19.
J Clin Invest ; 127(11): 4042-4058, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28972539

ABSTRACT

NK cells, lymphocytes of the innate immune system, are important for defense against infectious pathogens and cancer. Classically, the CD56dim NK cell subset is thought to mediate antitumor responses, whereas the CD56bright subset is involved in immunomodulation. Here, we challenge this paradigm by demonstrating that brief priming with IL-15 markedly enhanced the antitumor response of CD56bright NK cells. Priming improved multiple CD56bright cell functions: degranulation, cytotoxicity, and cytokine production. Primed CD56bright cells from leukemia patients demonstrated enhanced responses to autologous blasts in vitro, and primed CD56bright cells controlled leukemia cells in vivo in a murine xenograft model. Primed CD56bright cells from multiple myeloma (MM) patients displayed superior responses to autologous myeloma targets, and furthermore, CD56bright NK cells from MM patients primed with the IL-15 receptor agonist ALT-803 in vivo displayed enhanced ex vivo functional responses to MM targets. Effector mechanisms contributing to IL-15-based priming included improved cytotoxic protein expression, target cell conjugation, and LFA-1-, CD2-, and NKG2D-dependent activation of NK cells. Finally, IL-15 robustly stimulated the PI3K/Akt/mTOR and MEK/ERK pathways in CD56bright compared with CD56dim NK cells, and blockade of these pathways attenuated antitumor responses. These findings identify CD56bright NK cells as potent antitumor effectors that warrant further investigation as a cancer immunotherapy.


Subject(s)
Interleukin-15/pharmacology , Killer Cells, Natural/physiology , Leukemia, Myeloid, Acute/therapy , Multiple Myeloma/therapy , Animals , CD56 Antigen/metabolism , Cell Degranulation , Coculture Techniques , Cytotoxicity, Immunologic , Humans , Immunity, Innate , Immunologic Factors/pharmacology , Immunotherapy , Integrins/physiology , K562 Cells , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Proteins/pharmacology , Recombinant Fusion Proteins , Signal Transduction
20.
Science ; 348(6236): 803-8, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25837513

ABSTRACT

T cell immunity directed against tumor-encoded amino acid substitutions occurs in some melanoma patients. This implicates missense mutations as a source of patient-specific neoantigens. However, a systematic evaluation of these putative neoantigens as targets of antitumor immunity is lacking. Moreover, it remains unknown whether vaccination can augment such responses. We found that a dendritic cell vaccine led to an increase in naturally occurring neoantigen-specific immunity and revealed previously undetected human leukocyte antigen (HLA) class I-restricted neoantigens in patients with advanced melanoma. The presentation of neoantigens by HLA-A*02:01 in human melanoma was confirmed by mass spectrometry. Vaccination promoted a diverse neoantigen-specific T cell receptor (TCR) repertoire in terms of both TCR-ß usage and clonal composition. Our results demonstrate that vaccination directed at tumor-encoded amino acid substitutions broadens the antigenic breadth and clonal diversity of antitumor immunity.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/therapeutic use , Dendritic Cells/transplantation , HLA-A2 Antigen/immunology , Immunotherapy, Active/methods , Melanoma/therapy , Skin Neoplasms/therapy , T-Lymphocytes/immunology , Amino Acid Substitution/immunology , Antigen Presentation , Antigens, Neoplasm/genetics , Cancer Vaccines/immunology , Dendritic Cells/immunology , HLA-A2 Antigen/genetics , Humans , Melanoma/genetics , Melanoma/immunology , Monitoring, Immunologic , Mutation , Receptors, Antigen, T-Cell, alpha-beta/immunology , Skin Neoplasms/genetics , Skin Neoplasms/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...