Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Nurs ; 55(5): 157-163, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37556461

ABSTRACT

ABSTRACT: BACKGROUND: Nonconvulsive seizures are a major source of in-hospital morbidity and a cause of unexplained encephalopathy in critically ill patients. Electroencephalography (EEG) is essential to confirm nonconvulsive seizures and can guide patient-specific workup, treatment, and prognostication. In a 208-bed community hospital, EEG services were limited to 1 part-time EEG technician and 1 EEG machine shared between inpatient and outpatient settings. Its use was restricted to typical business hours. A nursing-led quality improvement (QI) project endeavored to enhance access to EEG by introducing a point-of-care rapid-response EEG program. METHODS: For this project, a multidisciplinary protocol was developed to deploy a Food and Drug Administration-cleared, point-of-care rapid-response EEG platform (Ceribell Inc) in a community hospital's emergency department and inpatient units to streamline neurodiagnostic workups. This QI project compared EEG volume, study location, time-to-EEG, number of cases with seizures captured on EEG, and hospital-level financial metrics of diagnosis-related group reimbursements and length of stay for the 6 months before (pre-QI, using conventional EEG) and 6 months after implementing the rapid-response protocol (post-QI). RESULTS: Electroencephalography volume increased from 35 studies pre-QI to 115 post-QI (3.29-fold increase), whereas the median time from EEG order to EEG start decreased 7.6-fold (74 [34-187] minutes post-QI vs 562 [321-1034] minutes pre-QI). Point-of-care EEG was also associated with more confirmed seizure diagnoses compared with conventional EEG (27/115 post-QI vs 0/35 pre-QI). This resulted in additional diagnosis-related group reimbursements and hospital revenue. Availability of point-of-care EEG was also associated with a shorter median length of stay. CONCLUSION: A nurse-led, rapid-response EEG protocol at a community hospital resulted in significant improvements in EEG accessibility and seizure diagnosis with hospital-level financial benefits. By expanding access to EEG, confirming nonconvulsive seizures, and increasing care efficiency, rapid-response EEG protocols can enhance patient care.


Subject(s)
Hospitals, Community , Seizures , Humans , Seizures/diagnosis , Electroencephalography/methods , Patient Care , Critical Care/methods
2.
Exp Neurol ; 287(Pt 3): 423-434, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26826447

ABSTRACT

A variety of in vitro models have been developed to understand the mechanisms underlying the regenerative failure of central nervous system (CNS) axons, and to guide pre-clinical development of regeneration-promoting therapeutics. These range from single-cell based assays that typically focus on molecular mechanisms to organotypic assays that aim to recapitulate in vivo behavior. By utilizing a combination of models, researchers can balance the speed, convenience, and mechanistic resolution of simpler models with the biological relevance of more complex models. This review will discuss a number of models that have been used to build our understanding of the molecular mechanisms of CNS axon regeneration.


Subject(s)
Axons/physiology , In Vitro Techniques , Nerve Regeneration/physiology , Neurons/cytology , Animals , Neurons/physiology
3.
Assay Drug Dev Technol ; 13(7): 377-88, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26230074

ABSTRACT

Astrocyte phenotypes change in a process called reactive gliosis after traumatic central nervous system (CNS) injury. Astrogliosis is characterized by expansion of the glial fibrillary acidic protein (GFAP) cytoskeleton, adoption of stellate morphologies, and differential expression of some extracellular matrix molecules. The astrocytic response immediately after injury is beneficial, but in the chronic injury phase, reactive astrocytes produce inhibitory factors (i.e., chondroitin sulfate proteoglycans [CSPGs]) that limit the regrowth of injured axons. There are no drugs that promote axon regeneration or functional recovery after CNS trauma in humans. To develop novel therapeutics for the injured CNS, we screened various libraries in a phenotypic assay to identify compounds that promote neurite outgrowth. However, the effects these compounds have on astrocytes are unknown. Specifically, we were interested in whether compounds could alter astrocytes in a manner that mimics the glial reaction to injury. To test this hypothesis, we developed cell-based phenotypic bioassays to measure changes in (1) GFAP morphology/localization and (2) CSPG expression/immunoreactivity from primary astrocyte cultures. These assays were optimized for six-point dose-response experiments in 96-well plates. The GFAP morphology assay is suitable for counter-screening with a Z-factor of 0.44±0.03 (mean±standard error of the mean; N=3 biological replicates). The CSPG assay is reproducible and informative, but does not satisfy common metrics for a "screenable" assay. As proof of principle, we tested a small set of hit compounds from our neurite outgrowth bioassay and identified one that can enhance axon growth without exacerbating the deleterious characteristics of reactive gliosis.


Subject(s)
Drug Evaluation, Preclinical , Gliosis/chemically induced , Animals , Brain Injuries/drug therapy , Cells, Cultured , Chondroitin Sulfate Proteoglycans/analysis , Female , Glial Fibrillary Acidic Protein/analysis , Humans , Mice , Mice, Inbred C57BL , Neurites/drug effects , Neurites/physiology , Phenotype , Protein Kinase Inhibitors/therapeutic use , Rats , Spinal Cord Injuries/drug therapy
4.
J Neurosurg ; 119(2): 324-31, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23767893

ABSTRACT

OBJECT: Simultaneous traumatic brain injury (TBI) and aortic injury has been considered unsurvivable for many years because treatments such as sedation and blood pressure goals conflict for these 2 conditions. Additionally, surgical interventions for aortic injury often require full anticoagulation, which is contraindicated in patients with TBI. For these reasons, and due to the relative rarity of aortic injury/TBI, little data are available to guide treating physicians. METHODS: A retrospective review was performed on all simultaneous TBI and aortic injury cases from 2000 to 2012 at a university-affiliated, Level I trauma center. Patient demographics, imaging studies, interventions, and outcomes were analyzed. Traumatic brain injury/aortic injury cases treated with endovascular stenting were specifically studied to determine trends in procedure timing, use of anticoagulation, and neurological outcome. RESULTS: Thirty-three patients with concurrent TBI and aortic injury were identified over a 12-year period. The median patient age was 44 years (range 16-86 years) and the overall mortality rate after imaging diagnosis was 46%. All surviving patients were awake and neurologically functional at discharge, and 83% were discharged home or to rehabilitation facilities. Patients who died had a higher Injury Severity Scale score (p = 0.006). Severe TBI (p = 0.045) or hemodynamic instability (p = 0.015) upon arrival to the hospital was also correlated with increased mortality rates. Thirty-three percent of aortic injury/TBI patients (n = 11) underwent endovascular stenting, and 7 of these patients received intravenous anticoagulation therapy at the time of surgery. Six of these 7 anticoagulation-treated patients experienced no significant progression on postoperative brain CT, whereas 1 patient died of hemodynamic instability prior to undergoing further imaging. CONCLUSIONS: Simultaneous TBI and aortic injury is a rare condition with a historically poor prognosis. However, these results suggest that many patients can survive with a good quality of life. Technological advances such as endovascular aortic stenting may improve patient outcome, and anticoagulation is not absolutely contraindicated after TBI.


Subject(s)
Aorta/injuries , Brain Injuries/surgery , Vascular System Injuries/surgery , Adolescent , Adult , Aged , Aged, 80 and over , Aorta/surgery , Brain Injuries/complications , Brain Injuries/mortality , Endovascular Procedures , Female , Humans , Injury Severity Score , Length of Stay , Male , Middle Aged , Prognosis , Quality of Life , Retrospective Studies , Stents , Trauma Centers , Treatment Outcome , Vascular System Injuries/complications , Vascular System Injuries/mortality
5.
Exp Neurol ; 247: 653-62, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23510761

ABSTRACT

Injured retinal ganglion cell (RGC) axons do not regenerate spontaneously, causing loss of vision in glaucoma and after trauma. Recent studies have identified several strategies that induce long distance regeneration in the optic nerve. Thus, a pressing question now is whether regenerating RGC axons can find their appropriate targets. Traditional methods of assessing RGC axon regeneration use histological sectioning. However, tissue sections provide fragmentary information about axonal trajectory and termination. To unequivocally evaluate regenerating RGC axons, here we apply tissue clearance and light sheet fluorescence microscopy (LSFM) to image whole optic nerve and brain without physical sectioning. In mice with PTEN/SOCS3 deletion, a condition known to promote robust regeneration, axon growth followed tortuous paths through the optic nerve, with many axons reversing course and extending towards the eye. Such aberrant growth was prevalent in the proximal region of the optic nerve where strong astroglial activation is present. In the optic chiasms of PTEN/SOCS3 deletion mice and PTEN deletion/Zymosan/cAMP mice, many axons project to the opposite optic nerve or to the ipsilateral optic tract. Following bilateral optic nerve crush, similar divergent trajectory is seen at the optic chiasm compared to unilateral crush. Centrally, axonal projection is limited predominantly to the hypothalamus. Together, we demonstrate the applicability of LSFM for comprehensive assessment of optic nerve regeneration, providing in-depth analysis of the axonal trajectory and pathfinding. Our study indicates significant axon misguidance in the optic nerve and brain, and underscores the need for investigation of axon guidance mechanisms during optic nerve regeneration in adults.


Subject(s)
Axons/pathology , Imaging, Three-Dimensional , Nerve Regeneration/physiology , Optic Nerve Diseases/pathology , Retinal Ganglion Cells/pathology , Adenoviridae/physiology , Animals , Cholera Toxin , Cyclic AMP/genetics , Disease Models, Animal , Female , Functional Laterality , Green Fluorescent Proteins/genetics , Mice , Mice, Transgenic , Microscopy, Fluorescence , Nerve Crush/methods , PTEN Phosphohydrolase/genetics , Retinal Ganglion Cells/physiology , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/genetics , Visual Pathways/pathology , Zymosan/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...