Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(22): 39374-39381, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36298891

ABSTRACT

The split photodiode and the lateral effect photodiode are two popular detectors for measuring beam displacement. For small displacements of a Gaussian beam, which is the case of interest here, they are often seen as equivalent and used interchangeably, giving a signal proportional to the displacement. We show theoretically and experimentally that in the limit of low technical noise, where the signal to noise ratio is dominated by the shot noise of the light, the lateral effect photodiode produces a better signal to noise ratio than the split photodiode, owing to its optimum spatial detector response. This quantum advantage can be practically exploited in spite of the intrinsic thermal noise of the lateral effect photodiode.

2.
Phys Rev Lett ; 124(23): 230504, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32603167

ABSTRACT

Nonlinear interferometers that replace beam splitters in Mach-Zehnder interferometers with nonlinear amplifiers for quantum-enhanced phase measurements have drawn increasing interest in recent years, but practical quantum sensors based on nonlinear interferometry remain an outstanding challenge. Here, we demonstrate the first practical application of nonlinear interferometry by measuring the displacement of an atomic force microscope microcantilever with quantum noise reduction of up to 3 dB below the standard quantum limit, corresponding to a quantum-enhanced measurement of beam displacement of 1.7 fm/sqrt[Hz]. Further, we minimize photon backaction noise while taking advantage of quantum noise reduction by transducing the cantilever displacement signal with a weak squeezed state while using dual homodyne detection with a higher power local oscillator. This approach may enable quantum-enhanced broadband, high-speed scanning probe microscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...