Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 921: 171194, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38408677

ABSTRACT

Soil near waste rock often contains high concentrations of antimony (Sb), but the mechanisms that mobilize Sb in a soil closely impacted by the waste rock piles are not well understood. We investigated these mobility mechanisms in soils near historical waste rock at the world's largest Sb mine. The sequential extraction (BCR) of soil reveal that over 95 % Sb is present in the residual fraction. The leached Sb concentration is related to the surface protonation and deprotonation of soil minerals. SEM-EDS shows Sb in the soil is associated with Fe and Ca. Moreover, X-ray absorption spectroscopy (XAS) results show Sb is predominantly present as Sb(V) and is associated with Fe in the form of tripuhyite (FeSbO4) as well as edge- and corner-sharing complexes on ferrihydrite and goethite. Thus, Fe in soils is important in controlling the mobility of Sb via surface complexation and co-precipitation of Sb by Fe oxides. The initially surface-adsorbed Sb(V) or co-precipitation is likely to undergo a phase transformation as the Fe oxides age. In addition, Sb mobility may be controlled by small amounts of calcium antimonate. These results further the understanding of the effect of secondary minerals in soils on the fate of Sb from waste rock weathering and inform source treatment for Sb-contaminated soils.

2.
Sci Total Environ ; 749: 141459, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33370906

ABSTRACT

Petroleum resource development has generated a global legacy of millions of active and decommissioned energy wells. Associated with this legacy are concerns about wellbore integrity failure and leakage of fugitive gas into groundwater and atmosphere. The fate of fugitive gas in the shallow subsurface is controlled by sediment heterogeneity, hydrostratigraphy and hydraulic connectivity. We characterized the shallow subsurface at a site in northeastern British Columbia, Canada; a region of extensive petroleum resource development. We collected 13 core profiles, 9 cone-penetrometer profiles, 58 sediment samples and 4 electrical resistivity profiles. At the site, a ~ 12 m thick layer of low-permeability diamict (10-8 m/s) overlays a more permeable (10-6 - 10-4 m/s) but highly heterogeneous sequence of glacigenic sand, clay and silt. We develop a conceptual hydrostratigraphic model for fluid flow in this system in the context of fugitive-gas migration. Driven by buoyancy forces, free-phase gas will move upward through discontinuous permeable zones within the Quaternary sediments, until it encounters lower permeability interbeds where it will pool, flow laterally or become trapped and dissolve into flowing groundwater. The vertical extent of gas migration will be significantly limited by the relatively continuous overlying diamict, a feature common across the Western Canadian Sedimentary Basin. However, intra-till lenses observed embedded within the diamict may provide pathways for gas to move vertically towards ground surface and into the atmosphere. This study provides one of the few investigations examining geological and hydrogeological heterogeneity in the shallow subsurface at scales relevant to gas migration. For glaciated regions with similar surficial geology, such as Western Canada Sedimentary Basin, gas that is released into the subsurface from an energy wellbore, below a surface diamict, will likely migrate laterally away from the wellbore, and be inhibited from reaching ground surface and emitting to atmosphere.

3.
J Contam Hydrol ; 234: 103699, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32862071

ABSTRACT

Hydrogeochemical models for the prediction of drainage quality from full-scale mine waste-rock piles are often parameterized using data from small-scale laboratory or field experiments of short duration. Yet, many model parameters and processes (e.g., sulfide-oxidation rates) vary strongly with the spatiotemporal dimensions of the experiment: the "upscaling" of prediction models remains a critical challenge for mine-waste management worldwide. Here, we investigate scale dependence in laboratory and field experiments that spanned orders-of-magnitude in size (i.e. 2 kg to 100,000 kg) at the Antamina mine in Peru. Normalized drainage mass loading rates systematically decreased with increasing scale, irrespective of waste-rock type. A process-based reactive-transport model was used to simulate observed rates and reproduce the geochemical composition of drainage across scales. Long-term trends in drainage quality could be quantitatively reproduced when the model was parameterized with mostly scale- and experiment-specific measured bulk properties or literature values, leaving geochemical rate coefficients the sole calibrated model parameters. Analysis of these fitted parameters revealed that the scale dependence of geochemical rates was largely explained by reactive mineral surface area. This work demonstrates that practical drainage quality predictions for full-scale waste-rock piles can be established from readily available bulk parameters determined at multiple scales.


Subject(s)
Waste Management , Minerals , Oxidation-Reduction , Peru
4.
Sci Rep ; 9(1): 14080, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31575969

ABSTRACT

Subsurface natural gas release from leaking oil and gas wells is a major environmental concern. Gas migration can cause aquifer contamination, explosive conditions in soil gas, and greenhouse gas emissions. Gas migration is controlled by complex interacting processes, thus constraining the distribution and magnitude of "fugitive gas" emissions remains a challenge. We simulated wellbore leakage in the vadose zone through a controlled release experiment and demonstrate that fugitive gas emissions can be directly influenced by barometric pressure changes. Decreases in barometric-pressure led to surface gas breakthroughs (>20-fold increase in <24 hours), even in the presence of low-permeability surficial soils. Current monitoring strategies do not consider the effect of barometric pressure changes on gas migration and may not provide adequate estimates of fugitive gas emissions. Frequent or continuous monitoring is needed to accurately detect and quantify fugitive gas emissions at oil and gas sites with a deep water table.

5.
ACS Omega ; 4(6): 10205-10215, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31460112

ABSTRACT

Most studies on the weathering of mine waste rock focus on the generation of acidic drainage with high metal concentrations, whereas metal(loid) release under neutral-rock drainage (NRD) conditions has received limited attention. Here, we present geochemical and mineralogical data from a long-term (>10 years) kinetic testing program with 50 waste-rock field barrels at the polymetallic Antamina mine in Peru. The weathering of most rock lithologies in the field experiments generated circumneutral to alkaline drainage (6 < pH < 9) but with concentrations of the oxyanion-forming metal(loid)s As, Mo, Se, and Sb in the mg/L range. The mobilization of As and Sb was particularly efficient from intrusive, marble and hornfels rocks that contained labile As- and Sb-sulfides, irrespective of bulk elemental content or waste-rock reactivity. High-alkalinity drainage from these materials sustained neutral-pH conditions that are unfavorable to oxyanion adsorption onto Fe-(oxyhydr)oxides and, therefore, enhanced As and Sb leaching. The release of Mo and Se from sulfidic skarn and intrusive waste rock was more proportional to elemental content but equally enhanced by pH-inhibited adsorption and negligible secondary mineral precipitation under NRD conditions. Our results demonstrate that oxyanion concentrations of environmental concern may be conveyed by neutral- to alkaline-pH waste-rock drainage and should be a focus of mine wastewater monitoring programs.

6.
Environ Sci Technol ; 53(10): 5678-5686, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30998001

ABSTRACT

Molybdenum contamination is a concern in mining regions worldwide. Better understanding of processes controlling Mo mobility in mine wastes is critical for assessing potential impacts and developing water-quality management strategies associated with this element. Here, we used Mo stable isotope (δ98/95Mo) analyses to investigate geochemical controls on Mo mobility within a tailings management facility (TMF) featuring oxic and anoxic environments. These isotopic analyses were integrated with X-ray absorption spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and aqueous chemical data. Dissolved Mo concentrations were inversely correlated with δ98/95Mo values such that enrichment of heavy Mo isotopes in solution reflected attenuation processes. Inner-sphere complexation of Mo(VI) with ferrihydrite was the primary driver of Mo removal and was accompanied by a ca. 1‰ isotope fractionation. Limited Mo attenuation and isotope fractionation were observed in Fe(II)- and Mo-rich anoxic TMF seepage, while attenuation and isotope fractionation were greatest during discharge and oxidation of this seepage after discharge into a pond where Fe-(oxyhydr)oxide precipitation promoted Mo sorption. Overall, this study highlights the role of sorption onto Fe-(oxyhydr)oxides in attenuating Mo in oxic environments, a process which can be traced by Mo isotope analyses.


Subject(s)
Mining , Molybdenum , Isotopes , X-Ray Absorption Spectroscopy , X-Ray Diffraction
7.
Chemosphere ; 215: 858-869, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30408882

ABSTRACT

The weathering of mine waste rock can cause release of metal-laden and acidic drainage that requires long-term and costly environmental management. To identify and quantify the geochemical processes and physical transport mechanisms controlling drainage quality, we monitored the weathering of five large-scale (20,000 t) instrumented waste-rock piles of variable and mixed-composition at the Antamina mine, Peru, in a decade-long monitoring program. Fine-grained, sulfidic waste rock with low-carbonate content exhibited high sulfide oxidation rates (>1 g S kg-1 waste rock yr-1) and within 7 years produced acidic (pH < 3) drainage with high Cu and Zn concentrations in the g L-1 range. In contrast, drainage from coarse, carbonate-rich waste rock remained neutral for >10 years and had significantly lower metal loads. Efficient metal retention (>99%) caused by sorption and secondary mineral formation of e.g., gypsum, Fe-(oxy)hydroxides, and Cu/Zn-hydroxysulfates enforced strong (temporary) controls on drainage quality. Furthermore, reactive waste-rock fractions, as small as 10% of total mass, dominated the overall drainage chemistry from the waste-rock piles through internal mixing. This study demonstrates that a reliable prediction of the timing and quality of waste-rock drainage on practice-relevant spatiotemporal scales requires a quantitative understanding of the prevailing in-situ porewater conditions, secondary mineralogy, and spatial distribution of reactive waste-rock fractions in composite piles.


Subject(s)
Environmental Monitoring/methods , Metals/chemistry , Mining , Peru
8.
Sci Total Environ ; 640-641: 1004-1014, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30021267

ABSTRACT

Bacteria can adversely affect the quality of drainage released from mine waste by catalyzing the oxidation of sulfide minerals and thereby accelerating the release of acidity and metals. However, the microbiological and geochemical controls on drainage quality from unsaturated and geochemically heterogeneous waste rock remain poorly understood. Here, we identified coexisting neutrophilic and acidophilic bacteria in different types of waste rock, indicating that robust endemic consortia are sustained within pore-scale microenvironments. Subsequently, natural weathering was simulated in laboratory column experiments with waste rock that contained either in-situ microbial consortia or suppressed populations with up to 1000 times smaller abundance and reduced phenotypic diversity after heating and drying. Drainage from waste rock with in-situ populations was up to two pH units lower and contained up to 16 times more sulfate and heavy metals compared to drainage from waste rock bearing treated populations, indicating significantly higher sulfide-oxidation rates. The drainage chemistry was further affected by sorption and formation of secondary-mineral phases (e.g., gypsum and hydroxy-carbonates). This study provides direct evidence for the existence of diverse microbial communities in waste rock and their important catalytic role on weathering rates, and illustrates the mutual controls of microbiology and geochemistry on waste-rock drainage quality.


Subject(s)
Environmental Microbiology , Geological Phenomena , Minerals , Carbonates , Metals, Heavy , Microbial Consortia , Sulfides , Weather
9.
J Contam Hydrol ; 201: 30-38, 2017 06.
Article in English | MEDLINE | ID: mdl-28434529

ABSTRACT

In mining environmental applications, it is important to assess water quality from waste rock piles (WRPs) and estimate the likelihood of acid rock drainage (ARD) over time. The mineralogical heterogeneity of WRPs is a source of uncertainty in this assessment, undermining the reliability of traditional bulk indicators used in the industry. We focused in this work on the bulk neutralizing potential ratio (NPR), which is defined as the ratio of the content of non-acid-generating minerals (typically reactive carbonates such as calcite) to the content of potentially acid-generating minerals (typically sulfides such as pyrite). We used a streamtube-based Monte-Carlo method to show why and to what extent bulk NPR can be a poor indicator of ARD occurrence. We simulated ensembles of WRPs identical in their geometry and bulk NPR, which only differed in their initial distribution of the acid generating and acid neutralizing minerals that control NPR. All models simulated the same principal acid-producing, acid-neutralizing and secondary mineral forming processes. We show that small differences in the distribution of local NPR values or the number of flow paths that generate acidity strongly influence drainage pH. The results indicate that the likelihood of ARD (epitomized by the probability of occurrence of pH<4 in a mixing boundary) within the first 100years can be as high as 75% for a NPR=2 and 40% for NPR=4. The latter is traditionally considered as a "universally safe" threshold to ensure non-acidic waters in practical applications. Our results suggest that new methods that explicitly account for mineralogical heterogeneity must be sought when computing effective (upscaled) NPR values at the scale of the piles.


Subject(s)
Groundwater/chemistry , Minerals/chemistry , Mining , Models, Theoretical , Carbonates/chemistry , Hydrogen-Ion Concentration , Iron , Monte Carlo Method , Reproducibility of Results , Stochastic Processes , Sulfides
10.
J Contam Hydrol ; 171: 49-65, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25461887

ABSTRACT

This study analyzed and compared unsaturated flow response and tracer breakthrough curves from a 10-m high constructed pile experiment (CPE) in the field (Antamina, Peru) and two 0.8m high laboratory-based columns. Similar materials were used at both experimental scales, with the exception of a narrower grain size distribution range for the smaller column tests. Observed results indicate that flow and solute transport regimes between experimental scales were comparable and dominated by flow and solute migration through granular matrix materials. These results are supported by analogous breakthrough curves (normalized to cross-sectional area and flow path length) that suggest observation- or smaller-scale heterogeneities within the porous media have been homogenized or smoothed at the transport-scale, long breakthrough tails, and similar recovered tracer mass fractions (i.e., 0.72-0.80) at the end of the experiment. CPE breakthrough curves do indicate a portion of the fluid flow follows rapid flow paths (open void or film flow); however, this portion accounts for a minor (i.e., ~0.1%) component of the overall flow and transport regime. Flow-corrected temporal moment analysis was used to estimate flow and transport parameter values; however large temporal variations in flow indicate that this method is better suited for conceptualizing transport regimes. In addition, a dual-porosity mobile-immobile (MIM), rate-limited mass-transfer approach was able to simulate tracer breakthrough and the dominant transport regimes from both scales. Dispersivity values used in model simulations reflect a scale-dependency, whereby column values were approximately 2× smaller than those values applied in CPE simulations. The mass-transfer coefficient, for solute transport between mobile and immobile regions, was considered as a model calibration factor. Column experiments are characterized by a larger "mobile to immobile" porosity ratio and a shorter experimental duration and flow path, which supports larger mass-transfer coefficient values (relative to the CPE). These results demonstrate that laboratory-based experiments may be able to mimic flow regimes observed in the field; however, the requirement of scale-dependent dispersivities and mass-transfer coefficients indicates that these tests may be more limited in understanding larger-scale solute transport between regions of different mobility. Nevertheless, the results of this study suggest that the reasonably simplistic modeling approaches utilized in this study may be applied at other field sites to estimate parameters and conceptualize dominant transport processes through highly heterogeneous, unsaturated material.


Subject(s)
Groundwater/analysis , Models, Theoretical , Water Movements , Water Pollutants, Chemical/analysis , Diffusion , Environmental Monitoring , Peru , Porosity , Time Factors
11.
J Contam Hydrol ; 134-135: 37-53, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22579666

ABSTRACT

A three dimensional flow and transport modeling using FRAC3DVS was undertaken to examine factors which influence plume detection in a performance monitoring network for a site where an unconfined aquifer composed of uniform unconsolidated sediments overlies fractured bedrock. The bedrock is assumed to contain a fracture system with three orthogonal fracture sets embedded in a low permeable homogeneous rock matrix. A dissolved phase, non-reactive contaminant is released from a source zone located at the ground surface. The processes which influence plume geometry, and probabilities of plume detection for a performance monitoring network located between the contaminant source and a downstream compliance boundary, are evaluated. Factors considered include the hydraulic conductivity of the unconfined aquifer, the geometric properties of the fracture network and the matrix permeability of the bedrock, and the contaminant detection threshold concentration. The simulations demonstrate that the character of the fracture network not only controls contaminant transport and plume detection in the bedrock but also influences plume detection in the overlying unconfined aquifer. The ratio of the hydraulic conductivity of the unconfined aquifer to the effective hydraulic conductivity of the fractured bedrock, and the contaminant detection threshold concentration, are principal factors influencing detection probability in the performance monitoring network. Results suggest that in many instances encountered in field practice, the unconfined aquifer and fractured bedrock should be viewed as an integrated hydrogeologic system from a monitoring perspective.


Subject(s)
Geological Phenomena , Groundwater/analysis , Models, Chemical , Water Pollutants/analysis , Water Pollution/analysis , Water Movements
12.
J Contam Hydrol ; 84(3-4): 178-96, 2006 Mar 20.
Article in English | MEDLINE | ID: mdl-16487624

ABSTRACT

A radiotracer study was conducted in a creosote-contaminated aquifer beneath the Fraser River, British Columbia Canada to investigate the in situ degradation of naphthalene. The groundwater is anaerobic, with abundant methane, ferrous iron and carbon dioxide. This study followed earlier work at the site where the contaminant distribution could only be explained by invoking a mass loss through degradation, even though extensive field and laboratory microcosm studies closer to the source zone onshore could not confirm degradation. Accordingly, 14C-naphthalene was injected into the aquifer offshore, further from the source zone where modeling suggested degradation was occurring. During the 230-day monitoring period, 14CO2 was detected, confirming the degradation of the radio-labeled naphthalene tracer. A zero-order degradation rate of naphthalene of 5 microg/L-day was estimated based on the decrease in 14C-naphthalene concentration with time. While the degradation pathway could not be determined from the radiotracer study alone, the geochemistry of the site suggests that either iron reduction or methanogenesis is the terminal electron accepting processes responsible for naphthalene oxidation.


Subject(s)
Creosote/analysis , Environmental Monitoring/methods , Fresh Water/analysis , Naphthalenes/analysis , Water Pollutants, Chemical/analysis , Anaerobiosis , Biodegradation, Environmental , British Columbia , Carbon Radioisotopes , Naphthalenes/chemistry , Oxidation-Reduction
14.
Science ; 298(5598): 1602-6, 2002 Nov 22.
Article in English | MEDLINE | ID: mdl-12446905

ABSTRACT

High levels of arsenic in well water are causing widespread poisoning in Bangladesh. In a typical aquifer in southern Bangladesh, chemical data imply that arsenic mobilization is associated with recent inflow of carbon. High concentrations of radiocarbon-young methane indicate that young carbon has driven recent biogeochemical processes, and irrigation pumping is sufficient to have drawn water to the depth where dissolved arsenic is at a maximum. The results of field injection of molasses, nitrate, and low-arsenic water show that organic carbon or its degradation products may quickly mobilize arsenic, oxidants may lower arsenic concentrations, and sorption of arsenic is limited by saturation of aquifer materials.


Subject(s)
Agriculture , Arsenic/analysis , Water Supply , Water/chemistry , Adsorption , Arsenic/chemistry , Bangladesh , Carbon/chemistry , Carbon Radioisotopes , Carbonates , Chemical Precipitation , Ferric Compounds/chemistry , Geologic Sediments/chemistry , Hydrogen-Ion Concentration , Iron/analysis , Iron/chemistry , Methane/analysis , Molasses , Nitrates/chemistry , Oxidation-Reduction , Seasons , Sulfates/analysis , Sulfates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...