Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Mil Med ; 187(3-4): 426-434, 2022 03 28.
Article in English | MEDLINE | ID: mdl-34196358

ABSTRACT

INTRODUCTION: Multidrug-resistant (MDR) Gram-negative infections complicate care of combat casualties. We describe the clinical characteristics, resistance patterns, and outcomes of Pseudomonas aeruginosa infections in combat casualties. METHODS: Combat casualties included in the Trauma Infectious Disease Outcomes Study with infections with and without P. aeruginosa isolation during initial hospitalization were compared. Pseudomonas aeruginosa from initial wound, blood, and serial isolates (≥7 days from previous isolate) collected from June 2009 through February 2014 was subjected to antimicrobial susceptibility testing, pulsed-field gel electrophoresis, and whole genome sequencing for assessing clonality. Multidrug resistance was determined using the CDC National Healthcare Safety Network definition. RESULTS: Of 829 combat casualties with infections diagnosed during initial hospitalization, 143 (17%) had P. aeruginosa isolated. Those with P. aeruginosa were more severely injured (median Injury Severity Score 33 [interquartile range (IQR) 27-45] vs 30 [IQR 18.5-42]; P < .001), had longer hospitalizations (median 58.5 [IQR 43-95] vs 38 [IQR 26-56] days; P < .001), and higher mortality (6.9% vs 1.5%; P < .001) than those with other organisms. Thirty-nine patients had serial P. aeruginosa isolation (median 2 subsequent isolates; IQR: 1-5), with decreasing antimicrobial susceptibility. Ten percent of P. aeruginosa isolates were MDR, associated with prior exposure to antipseudomonal antibiotics (P = .002), with amikacin and colistin remaining the most effective antimicrobials. Novel antimicrobials targeting MDR Gram-negative organisms were also examined, and 100% of the MDR P. aeruginosa isolates were resistant to imipenem/relabactam, while ceftazidime/avibactam and ceftolozane/tazobactam were active against 35% and 56% of the isolates, respectively. We identified two previously unrecognized P. aeruginosa outbreaks involving 13 patients. CONCLUSIONS: Pseudomonas aeruginosa continues to be a major cause of morbidity, affecting severely injured combat casualties, with emergent antimicrobial resistance upon serial isolation. Among MDR P. aeruginosa, active antimicrobials remain the oldest and most toxic. Despite ongoing efforts, outbreaks are still noted, reinforcing the crucial role of antimicrobial stewardship and infection control.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Humans , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/epidemiology
2.
PLoS One ; 16(8): e0255636, 2021.
Article in English | MEDLINE | ID: mdl-34339473

ABSTRACT

Recent reclassification of the Klebsiella genus to include Klebsiella variicola, and its association with bacteremia and mortality, has raised concerns. We examined Klebsiella spp. infections among battlefield trauma patients, including occurrence of invasive K. variicola disease. Klebsiella isolates collected from 51 wounded military personnel (2009-2014) through the Trauma Infectious Disease Outcomes Study were examined using polymerase chain reaction (PCR) and pulsed-field gel electrophoresis. K. variicola isolates were evaluated for hypermucoviscosity phenotype by the string test. Patients were severely injured, largely from blast injuries, and all received antibiotics prior to Klebsiella isolation. Multidrug-resistant Klebsiella isolates were identified in 23 (45%) patients; however, there were no significant differences when patients with and without multidrug-resistant Klebsiella were compared. A total of 237 isolates initially identified as K. pneumoniae were analyzed, with 141 clinical isolates associated with infections (remaining were colonizing isolates collected through surveillance groin swabs). Using PCR sequencing, 221 (93%) isolates were confirmed as K. pneumoniae, 10 (4%) were K. variicola, and 6 (3%) were K. quasipneumoniae. Five K. variicola isolates were associated with infections. Compared to K. pneumoniae, infecting K. variicola isolates were more likely to be from blood (4/5 versus 24/134, p = 0.04), and less likely to be multidrug-resistant (0/5 versus 99/134, p<0.01). No K. variicola isolates demonstrated the hypermucoviscosity phenotype. Although K. variicola isolates were frequently isolated from bloodstream infections, they were less likely to be multidrug-resistant. Further work is needed to facilitate diagnosis of K. variicola and clarify its clinical significance in larger prospective studies.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/drug therapy , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/pathogenicity , Klebsiella/genetics , Klebsiella/pathogenicity , War-Related Injuries/drug therapy , Wound Infection/drug therapy , Adult , Bacteremia/diagnosis , Bacteremia/drug therapy , Bacteremia/epidemiology , Bacteremia/microbiology , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Germany/epidemiology , Humans , Klebsiella/isolation & purification , Klebsiella Infections/diagnosis , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/isolation & purification , Male , Microbial Sensitivity Tests , Military Personnel , Phylogeny , Polymerase Chain Reaction , Retrospective Studies , Treatment Outcome , Virulence/genetics , War-Related Injuries/diagnosis , War-Related Injuries/epidemiology , War-Related Injuries/microbiology , Wound Infection/diagnosis , Wound Infection/epidemiology , Wound Infection/microbiology , Young Adult
3.
US Army Med Dep J ; (2-17): 12-17, 2017.
Article in English | MEDLINE | ID: mdl-28853114

ABSTRACT

Multidrug-resistant organisms (MDROs) are a global health problem that affect both civilian and military populations. Among wounded warriors, MDROs further complicate the care of trauma-related infections, resulting in extended duration of hospitalization, as well as increased morbidity and mortality. During the wars in Iraq and Afghanistan, extended spectrum ß-lactamase-producing Enterobacteriaceae were frequently isolated from wounded warriors. The potential emergence of difficult-to-treat carbapenem-resistant Enterobacteriaceae represented a serious challenge for clinicians. We examined carbapenem-resistant Enterobacteriaceae prevalence among wounded military personnel over a 6-year period (2009-2015). Among 4090 Enterobacteriaceae isolates collected, 16 (0.4%) were carbapenem-resistant, of which the majority was Enterobacter aerogenes (44%) followed by Klebsiella pneumoniae (37%), and Escherichia coli (19%). Five isolates (31%) collected from 2 patients were carbapenemase-producers with one associated with an infection. All 5 carbapenemase-producing isolates were resistant to all tested carbapenems and each carried one carbapenemase gene (4 with blaKPC-3 and 1 with blaNDM-1). Overall, although a large number of Enterobacteriaceae isolates were collected, only a small proportion was carbapenem-resistant and data indicate a lack of a cluster. Due to these limited numbers, it is difficult to make any conclusions regarding the association between carbapenem resistance, antibiotic exposure, and clinical outcomes.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Enterobacteriaceae Infections/epidemiology , Military Personnel , Afghanistan/epidemiology , Enterobacteriaceae Infections/microbiology , Humans , Iraq/epidemiology , Prevalence , United States
4.
Med Mycol ; 55(3): 334-343, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-27601610

ABSTRACT

Soft-tissue invasive fungal infections are increasingly recognized as significant entities directly contributing to morbidity and mortality. They complicate clinical care, requiring aggressive surgical debridement and systemic antifungal therapy. To evaluate new topical approaches to therapy, we examined the antifungal activity and cytotoxicity of Manuka Honey (MH) and polyhexamethylene biguanide (PHMB). The activities of multiple concentrations of MH (40%, 60%, 80%) and PHMB (0.01%, 0.04%, 0.1%) against 13 clinical mould isolates were evaluated using a time-kill assay between 5 min and 24 h. Concentrations were selected to represent current clinical use. Cell viability was examined in parallel for human epidermal keratinocytes, dermal fibroblasts and osteoblasts, allowing determination of the 50% viability (LD50) concentration. Antifungal activity of both agents correlated more closely with exposure time than concentration. Exophiala and Fusarium growth was completely suppressed at 5 min for all PHMB concentrations, and at 12 and 6 h, respectively, for all MH concentrations. Only Lichtheimia had persistent growth to both agents at 24 h. Viability assays displayed concentration-and time-dependent toxicity for PHMB. For MH, exposure time predicted cytotoxicity only when all cell types were analyzed in aggregate. This study demonstrates that MH and PHMB possess primarily time-dependent antifungal activity, but also exert in vitro toxicity on human cells which may limit clinical use. Further research is needed to determine ideal treatment strategies to optimize antifungal activity against moulds while limiting cytotoxicity against host tissues in vivo.


Subject(s)
Biguanides/pharmacology , Disinfectants/pharmacology , Fibroblasts/drug effects , Fungi/drug effects , Honey , Keratinocytes/drug effects , Osteoblasts/drug effects , Biguanides/toxicity , Cell Line , Cell Survival/drug effects , Disinfectants/toxicity , Fibroblasts/physiology , Fungi/physiology , Humans , Keratinocytes/physiology , Lethal Dose 50 , Microbial Sensitivity Tests , Osteoblasts/physiology , Time Factors
5.
BMC Infect Dis ; 16: 338, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27448413

ABSTRACT

BACKGROUND: The role of microbial colonization in disease is complex. Novel molecular tools to detect colonization offer theoretical improvements over traditional methods. We evaluated PCR/Electrospray Ionization-Time-of-Flight-Mass Spectrometry (PCR/ESI-TOF-MS) as a screening tool to study colonization of healthy military service members. METHODS: We assessed 101 healthy Soldiers using PCR/ESI-TOF-MS on nares, oropharynx, and groin specimens for the presence of gram-positive and gram-negative bacteria (GNB), fungi, and antibiotic resistance genes. A second set of swabs was processed by traditional culture, followed by identification using the BD Phoenix automated system; comparison between PCR/ESI-TOF-MS and culture was carried out only for GNB. RESULTS: Using PCR/ESI-TOF-MS, at least one colonizing organism was found on each individual: mean (SD) number of organisms per subject of 11.8(2.8). The mean number of organisms in the nares, groin and oropharynx was 3.8(1.3), 3.8(1.4) and 4.2(2), respectively. The most commonly detected organisms were aerobic gram-positive bacteria: primarily coagulase-negative Staphylococcus (101 subjects: 341 organisms), Streptococcus pneumoniae (54 subjects: 57 organisms), Staphylococcus aureus (58 subjects: 80 organisms) and Nocardia asteroides (45 subjects: 50 organisms). The mecA gene was found in 96 subjects. The most commonly found GNB was Haemophilus influenzae (20 subjects: 21 organisms) and the most common anaerobe was Propionibacterium acnes (59 subjects). Saccharomyces species (30 subjects) were the most common fungi detected. Only one GNB (nares E. coli) was identified in the same subject by both diagnostic systems. CONCLUSION: PCR/ESI-TOF-MS detected common colonizing organisms and identified more typically-virulent bacteria in asymptomatic, healthy adults. PCR/ESI-TOF-MS appears to be a useful method for detecting bacterial and fungal organisms, but further clinical correlation and validation studies are needed.


Subject(s)
Bacteria/isolation & purification , Fungi/isolation & purification , Microbiota , Military Personnel , Polymerase Chain Reaction/methods , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Adult , Bacteria/genetics , Bacteria/growth & development , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/isolation & purification , Female , Fungi/genetics , Fungi/growth & development , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/growth & development , Gram-Negative Bacteria/isolation & purification , Health , Humans , Male , Microbiological Techniques/methods , Molecular Diagnostic Techniques/methods , Pilot Projects , Staphylococcus aureus/genetics , Staphylococcus aureus/growth & development , Staphylococcus aureus/isolation & purification , Young Adult
6.
Diagn Microbiol Infect Dis ; 86(2): 211-20, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27460426

ABSTRACT

There is concern that susceptibility of Staphylococcus aureus to tetracyclines may decrease due to use of antimalarial prophylaxis (doxycycline). We examined characteristics related to tetracycline resistance, including doxycycline exposure, in S. aureus isolates collected via admission surveillance swabs and inpatient clinical cultures from United States military personnel injured during deployment (June 2009-January 2012). Tetracycline class resistance was determined using antimicrobial susceptibility testing. The first S. aureus isolate from 168 patients were analyzed, of which 38 (23%) isolates were resistant to tetracyclines (class). Tetracycline-resistant isolates had a higher proportion of resistance to clindamycin (P=0.019) compared to susceptible isolates. There was no significant difference in tetracycline resistance between isolates collected from patients with and without antimalarial prophylaxis; however, significantly more isolates had tet(M) resistance genes in the doxycycline exposure group (P=0.031). Despite 55% of the patients receiving doxycycline as antimalarial prophylaxis, there was no association with resistance to tetracyclines.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Antimalarials/administration & dosage , Chemoprevention/methods , Doxycycline/administration & dosage , Malaria/prevention & control , Staphylococcus aureus/drug effects , Tetracycline Resistance , Adult , Anti-Bacterial Agents/adverse effects , Antimalarials/adverse effects , Chemoprevention/adverse effects , Cohort Studies , Doxycycline/adverse effects , Female , Genes, Bacterial , Humans , Male , Microbial Sensitivity Tests , Military Personnel , Staphylococcus aureus/genetics , United States , Young Adult
7.
Diagn Microbiol Infect Dis ; 84(2): 144-50, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26607420

ABSTRACT

Data from recent conflicts related to war wounds and obligate anaerobes are limited. We define the epidemiology and antimicrobial susceptibility of obligate anaerobes from Iraq and Afghanistan casualties (6/2009-12/2013), as well as their association with clinical outcomes. Susceptibility against eleven antibiotics (7 classes) was tested. Overall, 59 patients had 119 obligate anaerobes identified (83 were first isolates). Obligate anaerobes were isolated 7-13 days post-injury, primarily from lower extremity wounds (43%), and were largely Bacteroides spp. (42%) and Clostridium spp. (19%). Patients with pelvic wounds were more likely to have Bacteroides spp. and concomitant resistant gram-negative aerobes. Seventy-three percent of isolates were resistant to ≥1 antimicrobials. Bacteroides spp. demonstrated the most resistance (16% of first isolates). Patients with resistant isolates had similar outcomes to those with susceptible strains. Serial recovery of isolates occurred in 15% of patients and was significantly associated with isolation of Bacteroides spp., along with resistant gram-negative aerobes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria, Anaerobic/drug effects , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Wound Infection/epidemiology , Wound Infection/microbiology , Wounds and Injuries/complications , Adult , Afghanistan , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/isolation & purification , Drug Resistance, Bacterial , Humans , Iraq , Male , Microbial Sensitivity Tests , Treatment Outcome , Warfare , Young Adult
8.
Article in English | MEDLINE | ID: mdl-28883948

ABSTRACT

BACKGROUND: Prior studies have shown an increase in multidrug-resistant (MDR) E. coli colonization from two percent in U.S.-based to 11 % in deployed, healthy military personnel. It is unclear if colonization with MDR organisms occurs through deployment exposures or risks related to routine overseas travel. This study prospectively evaluates rates and risk factors associated with MDR gram-negative bacterial and methicillin-resistant S. aureus (MRSA) colonization after international travel. METHODS: Participants traveled internationally for five or more days. Pre- and post-travel, colonizing bacteria from oropharyngeal, nares, groin, and peri-rectal (PR) areas were collected using BD CultureSwab™ MaxV(+). Identification and susceptibilities were done utilizing the BD Phoenix™ Automated Microbiology System. Non-MDR pre- and post-travel MDR bacteria within a subject were compared by pulsed-field gel electrophoresis (PFGE). A questionnaire solicited demographics and potential risk factors for MDR acquisition. RESULTS: Of 58 participants, 41 % were male and median age was 64 years. Pre- and post-travel swabs were obtained a median of ten and seven days before and after travel, respectively. Itineraries included 18 participants traveling to the Caribbean and Central America, 17 to Asia, 16 to Africa, 5 to Europe, 4 to South and North America. Seventeen of 22 travelers used atovaquone/proguanil for malaria prophylaxis. The only MDR organism isolated was extended-spectrum ß-lactamase (ESBL)-producing E. coli in five (9 %) participants post-travel (all PR and unrelated by PFGE). There were no statistically significant associations between exposure risks and new ESBL-producing E.coli colonization. Of 36 participants colonized with E. coli pre- and post-travel, new resistance was detected: TMP/SMX in 42 % of isolates (p < 0.01), tetracycline in 44 % (p < 0.01), and ampicillin-sulbactam in 33 % (p = 0.09). No participants were colonized with MRSA pre- or post-travel. CONCLUSION: Consistent with prior studies, new antimicrobial resistance was noted in colonizing E. coli after international travel. Nine percent of participants acquired new strains of ESBL-producing E.coli without identified risks.

10.
BMC Infect Dis ; 15: 223, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-26049931

ABSTRACT

BACKGROUND: Biofilms are associated with persistent infection. Reports characterizing clinical infectious outcomes and patient risk factors for colonization or infection with biofilm forming isolates are scarce. Our institution recently published a study examining the biofilm forming ability of 205 randomly selected clinical isolates. This present study aims to identify potential risk factors associated with these isolates and assess clinical infectious outcomes. METHODS: 221 clinical isolates collected from 2005 to 2012 and previously characterized for biofilm formation were studied. Clinical information from the associated patients, including demographics, comorbidities, antibiotic usage, laboratory values, and clinical infectious outcomes, was determined retrospectively through chart review. Duplicate isolates and non-clinical isolates were excluded from analysis. Associations with biofilm forming isolates were determined by univariate analysis and multivariate analysis. RESULTS: 187 isolates in 144 patients were identified for analysis; 113 were biofilm producers and 74 were not biofilm producers. Patients were primarily male (78 %) military members (61 %) with combat trauma (52 %). On multivariate analysis, the presence of methicillin-resistant Staphylococcus aureus (p < 0.01, OR 5.09, 95 % CI 1.12, 23.1) and Pseudomonas aeruginosa (p = 0.02, OR 3.73, 95 % CI 1.46, 9.53) were the only characteristics more likely to be present in the biofilm producing isolate group. Infectious outcomes of patients with non-biofilm forming isolates, including cure, relapse/reinfection, and chronic infection, were similar to infectious outcomes of patients with biofilm-forming isolates. Mortality with initial infection was higher in the biofilm producing isolate group (16 % vs 5 %, p = 0.01) but attributable mortality was low (1 of 14). No characteristics examined in this study were found to be associated with relapse/reinfection or chronic infection on multivariate analysis. CONCLUSIONS: Bacteria species, but not clinical characteristics, were associated with biofilm formation on multivariate analysis. Biofilm forming isolates and non-biofilm forming isolates had similar infectious outcomes in this study.


Subject(s)
Bacterial Infections/pathology , Biofilms/growth & development , Methicillin-Resistant Staphylococcus aureus/physiology , Pseudomonas aeruginosa/physiology , Adult , Bacterial Infections/microbiology , Demography , Female , Humans , Male , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Middle Aged , Multivariate Analysis , Pseudomonas aeruginosa/isolation & purification , Recurrence , Retrospective Studies , Risk Factors
11.
Med Mycol ; 53(3): 285-94, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25631479

ABSTRACT

Invasive fungal wound infections (IFIs) are increasingly reported in trauma patients and cause considerable morbidity and mortality despite standard of care treatment in trauma centers by experienced medical personnel. Topical agents such as oil of melaleuca, also known as tea tree oil (TTO), have been proposed for adjunctive treatment of IFIs. We evaluated the activity of TTO against filamentous fungi associated with IFIs by testing 13 clinical isolates representing nine species via time-kill assay with seven concentrations of TTO (100%, 75%, 50%, 25%, 10%, 5%, and 1%). To ascertain the safety of topical application to wounds, cell viability assays were performed in vitro using human fibroblasts, keratinocytes, osteoblasts, and umbilical vein endothelial cells with 10 concentrations of TTO (75%, 50%, 25%, 10%, 5%, and 10-fold serial dilutions from 1 to 0.0001%) at five time points (5, 15, 30, 60, and 180 min). Compatibility of TTO with explanted porcine tissues was also assessed with eight concentrations of TTO (100%, 75%, 50%, 25%, 10%, 5%, 1%, and 0.1%) at the time points used for cellular assays and at 24 h. The time-kill studies showed that fungicidal activity was variable between isolates. The effect of TTO on cell viability was primarily concentration dependent with significant cytotoxicity at concentrations of ≥ 10% and ≥ 50% for cells lines and whole tissue, respectively. Our findings demonstrate that TTO possesses antifungal activity against filamentous fungi associated with IFIs; furthermore that negligible effects on whole tissues, in contrast to individual cells, were observed following exposure to TTO. Collectively, these findings indicate a potential use of TTO as topical treatment of IFIs.


Subject(s)
Antifungal Agents/pharmacology , Antifungal Agents/toxicity , Fungi/drug effects , Melaleuca/chemistry , Tea Tree Oil/pharmacology , Tea Tree Oil/toxicity , Animals , Antifungal Agents/isolation & purification , Cell Line , Cell Survival/drug effects , Endothelial Cells/drug effects , Fibroblasts/drug effects , Fungi/isolation & purification , Humans , Keratinocytes/drug effects , Mycoses/microbiology , Osteoblasts/drug effects , Swine , Tea Tree Oil/isolation & purification , Wound Infection/microbiology
12.
J Clin Microbiol ; 52(11): 3869-77, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25143566

ABSTRACT

Escherichia coli is the most common colonizing and infecting organism isolated from U.S. service members injured during deployment. Our objective was to evaluate the phenotypic and genotypic changes of infecting and colonizing E. coli organisms over time and across facilities to better understand their transmission patterns. E. coli isolates were collected via surveillance cultures and infection workups from U.S. military personnel injured during deployment (June 2009 to May 2011). The isolates underwent antimicrobial susceptibility testing, pulsed-field gel electrophoresis, and multiplex PCR for phylotyping to determine their resistance profiles and clonality. A total of 343 colonizing and 136 infecting E. coli isolates were analyzed, of which 197 (57%) and 109 (80%) isolates, respectively, produced extended-spectrum ß-lactamases (ESBL). Phylogroup A was predominant among both colonizing (38%) and infecting isolates (43%). Although 188 unique pulsed-field types (PFTs) were identified from the colonizing isolates, and 54 PFTs were identified from the infecting isolates, there was a lack of PFT overlap between study years, combat zones, and military treatment facilities. On a per-subject basis, 26% and 32% of the patients with serial colonizing isolates and 10% and 21% with serial infecting isolates acquired changes in their phylogroup and PFT profiles, respectively, over time. The production of ESBL remained high over time and across facilities, with no substantial changes in antimicrobial susceptibilities. Overall, our results demonstrated an array of genotypic and phenotypic differences for the isolates without large clonal clusters; however, the same PFTs were occasionally observed in the colonizing and infecting isolates, suggesting that the source of infections may be endogenous host organisms.


Subject(s)
Carrier State/microbiology , Escherichia coli Infections/microbiology , Escherichia coli/classification , Escherichia coli/isolation & purification , Military Personnel , Adult , Carrier State/epidemiology , Cluster Analysis , Cohort Studies , Electrophoresis, Gel, Pulsed-Field , Escherichia coli/genetics , Escherichia coli/physiology , Escherichia coli Infections/epidemiology , Female , Genotype , Humans , Male , Microbial Sensitivity Tests , Molecular Typing , Phenotype , Polymerase Chain Reaction , Time Factors , Young Adult
13.
BMC Infect Dis ; 14: 190, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24712544

ABSTRACT

BACKGROUND: Complex traumatic injuries sustained by military personnel, particularly when involving extremities, often result in infectious complications and substantial morbidity. One factor that may further impair patient recovery is the persistence of infections. Surface-attached microbial communities, known as biofilms, may play a role in hindering the management of infections; however, clinical data associating biofilm formation with persistent or chronic infections are lacking. Therefore, we evaluated the production of bacterial biofilms as a potential risk factor for persistent infections among wounded military personnel. METHODS: Bacterial isolates and clinical data from military personnel with deployment-related injuries were collected through the Trauma Infectious Disease Outcomes Study. The study population consisted of patients with diagnosed skin and soft-tissue infections. Cases (wounds with bacterial isolates of the same organism collected 14 days apart) were compared to controls (wounds with non-recurrent bacterial isolates), which were matched by organism and infectious disease syndrome. Potential risk factors for persistent infections, including biofilm formation, were examined in a univariate analysis. Data are expressed as odds ratios (OR; 95% confidence interval [CI]). RESULTS: On a per infected wound basis, 35 cases (representing 25 patients) and 69 controls (representing 60 patients) were identified. Eight patients with multiple wounds were utilized as both cases and controls. Overall, 235 bacterial isolates were tested for biofilm formation in the case-control analysis. Biofilm formation was significantly associated with infection persistence (OR: 29.49; CI: 6.24-infinity) in a univariate analysis. Multidrug resistance (OR: 5.62; CI: 1.02-56.92), packed red blood cell transfusion requirements within the first 24 hours (OR: 1.02; CI: 1.01-1.04), operating room visits prior to and on the date of infection diagnosis (OR: 2.05; CI: 1.09-4.28), anatomical location of infected wound (OR: 5.47; CI: 1.65-23.39), and occurrence of polymicrobial infections (OR: 69.71; CI: 15.39-infinity) were also significant risk factors for persistent infections. CONCLUSIONS: We found that biofilm production by clinical strains is significantly associated with the persistence of wound infections. However, the statistical power of the analysis was limited due to the small sample size, precluding a multivariate analysis. Further data are needed to confirm biofilm formation as a risk factor for persistent wound infections.


Subject(s)
Biofilms , Military Personnel/statistics & numerical data , Wound Infection/epidemiology , Wound Infection/microbiology , Adult , Case-Control Studies , Chronic Disease , Female , Humans , Male , Risk Factors , United States/epidemiology , Wounds and Injuries/microbiology , Young Adult
15.
Open Forum Infect Dis ; 1(3): ofu109, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25734177

ABSTRACT

BACKGROUND: Penetrating wounds with environmental contamination are associated with a range of infectious complications, including fungus. This is the first study to examine the epidemiology, resistance patterns, and outcomes of Candida infections and colonization in United States military patients injured in Iraq and Afghanistan. METHODS: Clinical information associated with initial unique and serial Candida isolates collected from patients (June 2009-October 2013) through the Trauma Infectious Disease Outcomes Study (TIDOS) was evaluated. Susceptibilities were performed using Sensititre YeastOne (YO-9) plates and interpreted by Clinical Laboratory and Standards Institute (CLSI) and adjusted-European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria. RESULTS: The analysis included 127 patients with 131 unique Candida isolates, of which 102 were Candida albicans and 29 non-albicans Candida spp. Overall, 99% of patients were male with a median age of 23 and an injury severity score of 22. Injuries were primarily due to blasts (77%) and sustained among personnel serving in Afghanistan (89%). There was a median of 7 days from injury to Candida isolation, and 74 isolates were associated with infection. In the multivariate analysis, non-albicans Candida spp were associated with prior antifungal exposure, blood isolates, and wound isolates (P < .01). Nonsusceptibility by CLSI and EUCAST criteria was associated with non-albicans Candida spp (P < .05). Patients with Candida isolation had a 7.1% mortality rate, compared with 1.4% from the overall TIDOS population. CONCLUSIONS: Candida isolation from patients with penetrating war injuries may identify a population at higher risk for death. Prospective studies are needed to determine whether targeted antifungals and surgical management will affect this mortality rate.

16.
BMC Infect Dis ; 13: 325, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-24060181

ABSTRACT

BACKGROUND: Staphylococcus aureus [methicillin-resistant and methicillin-susceptible (MRSA/MSSA)] is a leading cause of infections in military personnel, but there are limited data regarding baseline colonization of individuals while deployed. We conducted a pilot study to screen non-deployed and deployed healthy military service members for MRSA/MSSA colonization at various anatomic sites and assessed isolates for molecular differences. METHODS: Colonization point-prevalence of 101 military personnel in the US and 100 in Afghanistan was determined by swabbing 7 anatomic sites. US-based individuals had received no antibiotics within 30 days, and Afghanistan-deployed personnel were taking doxycycline for malaria prophylaxis. Isolates underwent identification and testing for antimicrobial resistance, virulence factors, and pulsed-field type (PFT). RESULTS: 4 individuals in the US (4 isolates- 3 oropharynx, 1 perirectal) and 4 in Afghanistan (6 isolates- 2 oropharynx, 2 nare, 1 hand, 1 foot) were colonized with MRSA. Among US-based personnel, 3 had USA300 (1 PVL+) and 1 USA700. Among Afghanistan-based personnel, 1 had USA300 (PVL+), 1 USA800 and 2 USA1000. MSSA was present in 40 (71 isolates-25 oropharynx, 15 nare) of the US-based and 32 (65 isolates- 16 oropharynx, 24 nare) of the Afghanistan-based individuals. 56 (79%) US and 41(63%) Afghanistan-based individuals had MSSA isolates recovered from extra-nare sites. The most common MSSA PFTs were USA200 (9 isolates) in the US and USA800 (7 isolates) in Afghanistan. MRSA/MSSA isolates were susceptible to doxycycline in all but 3 personnel (1 US, 2 Afghanistan; all were MSSA isolates that carried tetM). CONCLUSION: MRSA and MSSA colonization of military personnel was not associated with deployment status or doxycycline exposure. Higher S. aureus oropharynx colonization rates were observed and may warrant changes in decolonization practices.


Subject(s)
Military Personnel , Staphylococcus aureus/isolation & purification , Adult , Afghanistan , Drug Resistance, Bacterial , Female , Humans , Male , Staphylococcus aureus/classification , Staphylococcus aureus/drug effects , United States , Virulence Factors/metabolism
17.
Scand J Infect Dis ; 45(10): 752-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23957540

ABSTRACT

BACKGROUND: Methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) Staphylococcus aureus colonization is associated with increased rates of infection. Rapid and reliable detection methods are needed to identify colonization of nares and extra-nare sites, particularly given recent reports of oropharynx-only colonization. Detection methods for MRSA/MSSA colonization include culture, PCR, and novel methods such as PCR/electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). METHODS: We evaluated 101 healthy military members for S. aureus colonization in the nares, oropharynx, axilla, and groin, using CHROMagar S. aureus medium and Xpert SA Nasal Complete PCR for MRSA/MSSA detection. The same subjects were screened in the nares, oropharynx, and groin using PCR/ESI-TOF-MS. RESULTS: By culture, 3 subjects were MRSA-colonized (all oropharynx) and 34 subjects were MSSA-colonized (all 4 sites). PCR detected oropharyngeal MRSA in 2 subjects, which correlated with culture findings. By PCR, 47 subjects were MSSA-colonized (all 4 sites); however, 43 axillary samples were invalid, 39 of which were associated with deodorant/anti-perspirant use (93%, p < 0.01). By PCR/ESI-TOF-MS, 4 subjects were MRSA-colonized, 2 in the nares and 2 in the oropharynx; however, neither of these correlated with positive MRSA cultures. Twenty-eight subjects had MSSA by PCR/ESI-TOF-MS, and 41 were found to have possible MRSA (S. aureus with mecA and coagulase-negative Staphylococcus (CoNS)). CONCLUSION: The overall 3% MRSA colonization rate is consistent with historical reports, but the oropharynx-only colonization supports more recent findings. In addition, the use of deodorant/anti-perspirant invalidated axillary PCR samples, limiting its utility. Defining MRSA positivity by PCR/ESI-TOF-MS is complicated by co-colonization of S. aureus with CoNS, which can also carry mecA.


Subject(s)
Bacteriological Techniques/methods , Carrier State/diagnosis , Mass Spectrometry/methods , Polymerase Chain Reaction/methods , Staphylococcal Infections/diagnosis , Staphylococcus aureus/isolation & purification , Adolescent , Adult , Carrier State/microbiology , Female , Humans , Male , Methicillin Resistance , Military Personnel , Staphylococcal Infections/microbiology , Staphylococcus aureus/chemistry , Staphylococcus aureus/genetics , Staphylococcus aureus/growth & development , Young Adult
18.
Am J Trop Med Hyg ; 89(2): 380-4, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23817329

ABSTRACT

Leptospirosis may be caused by > 250 Leptospira serovars. Serovar classification is a complex task that most laboratories cannot perform. We assessed the interlaboratory reproducibility of a pulsed-field gel electrophoresis (PFGE) identification technique developed by the Centers for Disease Control and Prevention (CDC). Blinded exchange of 93 Leptospiraceae strains occurred between San Antonio Military Medical Center (SAMMC) and the CDC. PFGE was performed and gel images were analyzed and compared with patterns present in each laboratory's database (CDC database: > 800 strain patterns; SAMMC database: > 300 strain patterns). Overall, 93.7% (74 of 79) of strains present in each receiving laboratory's database were correctly identified. Five isolates were misidentified, and two isolates did not match serovar PFGE patterns in the receiving laboratory's database. Patterns for these seven isolates were identical between laboratories; four serovars represented misidentified reference strains. The PFGE methodology studied showed excellent interlaboratory reproducibility, enabling standardization and data sharing between laboratories.


Subject(s)
Electrophoresis, Gel, Pulsed-Field/standards , Laboratories , Leptospira/classification , Leptospira/genetics , Serotyping/standards , DNA, Bacterial/analysis , Genetic Variation , Phylogeny , Reproducibility of Results
19.
BMC Infect Dis ; 13: 68, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23384348

ABSTRACT

BACKGROUND: The US military has seen steady increases in multidrug-resistant (MDR) gram-negative bacteria (GNB) infections in casualties from Iraq and Afghanistan. This study evaluates the prevalence of MDR GNB colonization in US military personnel. METHODS: GNB colonization surveillance of healthy, asymptomatic military personnel (101 in the US and 100 in Afghanistan) was performed by swabbing 7 anatomical sites. US-based personnel had received no antibiotics within 30 days of specimen collection, and Afghanistan-based personnel were receiving doxycycline for malaria chemoprophylaxis at time of specimen collection. Isolates underwent genotypic and phenotypic characterization. RESULTS: The only colonizing MDR GNB recovered in both populations was Escherichia coli (p=0.01), which was seen in 2% of US-based personnel (all perirectal) and 11% of Afghanistan-based personnel (10 perirectal, 1 foot+groin). Individuals with higher off-base exposures in Afghanistan did not show a difference in overall GNB colonization or MDR E. coli colonization, compared with those with limited off-base exposures. CONCLUSION: Healthy US- and Afghanistan-based military personnel have community onset-MDR E. coli colonization, with Afghanistan-based personnel showing a 5.5-fold higher prevalence. The association of doxycycline prophylaxis or other exposures with antimicrobial resistance and increased rates of MDR E. coli colonization needs further evaluation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carrier State/epidemiology , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections/epidemiology , Escherichia coli/drug effects , Military Personnel , Adult , Afghanistan/epidemiology , Carrier State/microbiology , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Female , Humans , Male , Prevalence , United States/epidemiology , Young Adult
20.
BMC Infect Dis ; 13: 47, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23356488

ABSTRACT

BACKGROUND: Biofilm formation is a major virulence factor contributing to the chronicity of infections. To date few studies have evaluated biofilm formation in infecting isolates of patients including both Gram-positive and Gram-negative multidrug-resistant (MDR) species in the context of numerous types of infectious syndromes. Herein, we investigated the biofilm forming capacity in a large collection of single patient infecting isolates and compared the relationship between biofilm formation to various strain characteristics. METHODS: The biofilm-forming capacity of 205 randomly sampled clinical isolates from patients, collected from various anatomical sites, admitted for treatment at Brooke Army Medical Center (BAMC) from 2004-2011, including methicillin-resistant/methicillin susceptible Staphylococcus aureus (MRSA/MSSA) (n=23), Acinetobacter baumannii (n=53), Pseudomonas aeruginosa (n=36), Klebsiella pneumoniae (n=54), and Escherichia coli (n=39), were evaluated for biofilm formation using the high-throughput microtiter plate assay and scanning electron microscopy (SEM). Relationships between biofilm formation to clonal type, site of isolate collection, and MDR phenotype were evaluated. Furthermore, in patients with relapsing infections, serial strains were assessed for their ability to form biofilms in vitro. RESULTS: Of the 205 clinical isolates tested, 126 strains (61.4%) were observed to form biofilms in vitro at levels greater than or equal to the Staphylococcus epidermidis, positive biofilm producing strain, with P. aeruginosa and S. aureus having the greatest number of biofilm producing strains. Biofilm formation was significantly associated with specific clonal types, the site of isolate collection, and strains positive for biofilm formation were more frequently observed to be MDR. In patients with relapsing infections, the majority of serial isolates recovered from these individuals were observed to be strong biofilm producers in vitro. CONCLUSIONS: This study is the first to evaluate biofilm formation in a large collection of infecting clinical isolates representing diverse types of infections. Our results demonstrate: (1) biofilm formation is a heterogeneous property amongst clinical strains which is associated with certain clonal types, (2) biofilm forming strains are more frequently isolated from non-fluid tissues, in particular bone and soft tissues, (3) MDR pathogens are more often biofilm formers, and (4) strains from patients with persistent infections are positive for biofilm formation.


Subject(s)
Bacterial Infections/microbiology , Biofilms , Gram-Negative Bacteria/physiology , Gram-Positive Bacteria/physiology , Anti-Bacterial Agents/pharmacology , Chronic Disease , Drug Resistance, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification , Humans , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL
...