Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Cell Rep Phys Sci ; 5(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38605913

ABSTRACT

Hypervirulent Klebsiella pneumoniae is known for its increased extracellular polysaccharide production. Biofilm matrices of hypervirulent K. pneumoniae have increased polysaccharide abundance and are uniquely susceptible to disruption by peptide bactenecin 7 (bac7 (1-35)). Here, using confocal microscopy, we show that polysaccharides within the biofilm matrix collapse following bac7 (1-35) treatment. This collapse led to the release of cells from the biofilm, which were then killed by the peptide. Characterization of truncated peptide analogs revealed that their interactions with polysaccharide were responsible for the biofilm matrix changes that accompany bac7 (1-35) treatment. Ultraviolet photodissociation mass spectrometry with the parental peptide or a truncated analog bac7 (10-35) reveal the important regions for bac7 (1-35) complexing with polysaccharides. Finally, we tested bac7 (1-35) using a murine skin abscess model and observed a significant decrease in the bacterial burden. These findings unveil the potential of bac7 (1-35) polysaccharide interactions to collapse K. pneumoniae biofilms.

2.
Clin Cancer Res ; 30(3): 480-488, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37792436

ABSTRACT

Since the first approval of a tumor-agnostic indication in 2017, a total of seven tumor-agnostic indications involving six drugs have received approval from the FDA. In this paper, the master protocol subteam of the Statistical Methods in Oncology Scientific Working Group, Biopharmaceutical Session, American Statistical Association, provides a comprehensive summary of these seven tumor-agnostic approvals, describing their mechanisms of action; biomarker prevalence; study design; companion diagnostics; regulatory aspects, including comparisons of global regulatory requirements; and health technology assessment approval. Also discussed are practical considerations relating to the regulatory approval of tumor-agnostic indications, specifically (i) recommendations for the design stage to mitigate the risk that exceptions may occur if a treatment is initially hypothesized to be effective for all tumor types and (ii) because drug development continues after approval of a tumor-agnostic indication, recommendations for further development of tumor-specific indications in first-line patients in the setting of a randomized confirmatory basket trial, acknowledging the challenges in this area. These recommendations and practical considerations may provide insights for the future development of drugs for tumor-agnostic indications.


Subject(s)
Drug Approval , Neoplasms , Humans , United States , United States Food and Drug Administration , Neoplasms/diagnosis , Neoplasms/drug therapy , Drug Development , Biomarkers
3.
J Biopharm Stat ; 34(2): 205-221, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36988397

ABSTRACT

For multiple rare diseases as defined by a common biomarker signature, or a disease with multiple disease subtypes of low frequency, it is often possible to provide confirmatory evidence for these disease or subtypes (baskets) as a combined group. A novel drug, as a second generation, may have marginal improvement in efficacy overall but superior efficacy in some baskets. In this situation, it is appealing to test hypotheses of both non-inferiority overall and superiority on certain baskets. The challenge is designing a confirmatory study efficient to address multiple questions in one trial. A two-stage adaptive design is proposed to test the non-inferiority hypothesis at the interim stage, followed by pruning and pooling before testing a superiority hypothesis at the final stage. Such a design enables an efficient and novel registration pathway, including an early claim of non-inferiority followed by a potential label extension with superiority on certain baskets and an improved benefit-risk profile demonstrated by longer term efficacy and safety data. Operating characteristics of this design are examined by simulation studies, and its appealing features make it ready for use in a confirmatory setting, especially in emerging markets, where both the need and the possibility for efficient use of resources may be the greatest.


Subject(s)
Research Design , Humans , Computer Simulation
4.
Endocrinology ; 164(12)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37897495

ABSTRACT

Breast tumors overexpressing human epidermal growth factor receptor (HER2) confer intrinsic resistance to endocrine therapy (ET), and patients with HER2/estrogen receptor-positive (HER2+/ER+) breast cancer (BCa) are less responsive to ET than HER2-/ER+. However, real-world evidence reveals that a large subset of patients with HER2+/ER+ receive ET as monotherapy, positioning this treatment pattern as a clinical challenge. In the present study, we developed and characterized 2 in vitro models of ET-resistant (ETR) HER2+/ER+ BCa to identify possible therapeutic vulnerabilities. To mimic ETR to aromatase inhibitors (AIs), we developed 2 long-term estrogen deprivation (LTED) cell lines from BT-474 (BT474) and MDA-MB-361 (MM361). Growth assays, PAM50 subtyping, and genomic and transcriptomic analyses, followed by validation and functional studies, were used to identify targetable differences between ET-responsive parental and ETR-LTED HER2+/ER+ cells. Compared to their parental cells, MM361 LTEDs grew faster, lost ER, and increased HER2 expression, whereas BT474 LTEDs grew slower and maintained ER and HER2 expression. Both LTED variants had reduced responsiveness to fulvestrant. Whole-genome sequencing of aggressive MM361 LTEDs identified mutations in genes encoding transcription factors and chromatin modifiers. Single-cell RNA sequencing demonstrated a shift towards non-luminal phenotypes, and revealed metabolic remodeling of MM361 LTEDs, with upregulated lipid metabolism and ferroptosis-associated antioxidant genes, including GPX4. Combining a GPX4 inhibitor with anti-HER2 agents induced significant cell death in both MM361 and BT474 LTEDs. The BT474 and MM361 AI-resistant models capture distinct phenotypes of HER2+/ER+ BCa and identify altered lipid metabolism and ferroptosis remodeling as vulnerabilities of this type of ETR BCa.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Fulvestrant/pharmacology , Fulvestrant/therapeutic use , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/therapeutic use , Estrogens/metabolism , Cell Line, Tumor , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism
5.
bioRxiv ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37662291

ABSTRACT

Background: Breast tumors overexpressing human epidermal growth factor receptor (HER2) confer intrinsic resistance to endocrine therapy (ET), and patients with HER2/ estrogen receptor-positive (HER2+/HR+) breast cancer (BCa) are less responsive to ET than HER2-/ER+. However, real-world evidence reveals that a large subset of HER2+/ER+ patients receive ET as monotherapy, positioning this treatment pattern as a clinical challenge. In the present study, we developed and characterized two distinct in vitro models of ET-resistant (ETR) HER2+/ER+ BCa to identify possible therapeutic vulnerabilities. Methods: To mimic ETR to aromatase inhibitors (AI), we developed two long-term estrogen-deprived (LTED) cell lines from BT-474 (BT474) and MDA-MB-361 (MM361). Growth assays, PAM50 molecular subtyping, genomic and transcriptomic analyses, followed by validation and functional studies, were used to identify targetable differences between ET-responsive parental and ETR-LTED HER2+/ER+ cells. Results: Compared to their parental cells, MM361 LTEDs grew faster, lost ER, and increased HER2 expression, whereas BT474 LTEDs grew slower and maintained ER and HER2 expression. Both LTED variants had reduced responsiveness to fulvestrant. Whole-genome sequencing of the more aggressive MM361 LTED model system identified exonic mutations in genes encoding transcription factors and chromatin modifiers. Single-cell RNA sequencing demonstrated a shift towards non-luminal phenotypes, and revealed metabolic remodeling of MM361 LTEDs, with upregulated lipid metabolism and antioxidant genes associated with ferroptosis, including GPX4. Combining the GPX4 inhibitor RSL3 with anti-HER2 agents induced significant cell death in both the MM361 and BT474 LTEDs. Conclusions: The BT474 and MM361 AI-resistant models capture distinct phenotypes of HER2+/ER+ BCa and identify altered lipid metabolism and ferroptosis remodeling as vulnerabilities of this type of ETR BCa.

6.
Ther Innov Regul Sci ; 57(6): 1136-1147, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37615880

ABSTRACT

Master protocols (MPs) are an important addition to the clinical trial repertoire. As defined by the U.S. Food and Drug Administration (FDA), this term means "a protocol designed with multiple sub-studies, which may have different objectives (goals) and involve coordinated efforts to evaluate one or more investigational drugs in one or more disease subtypes within the overall trial structure." This means we now have a unique, scientifically based MP that describes how a clinical trial will be conducted using one or more potential candidate therapies to treat patients in one or more diseases. Patient engagement (PE) is also a critical factor that has been recognized by FDA through its Patient-Focused Drug Development (PFDD) initiative, and by the European Medicines Agency (EMA), which states on its website that it has been actively interacting with patients since the creation of the Agency in 1995. We propose that utilizing these PE principles in MPs can make them more successful for sponsors, providers, and patients. Potential benefits of MPs for patients awaiting treatment can include treatments that better fit a patient's needs; availability of more treatments; and faster access to treatments. These make it possible to develop innovative therapies (especially for rare diseases and/or unique subpopulations, e.g., pediatrics), to minimize untoward side effects through careful dose escalation practices and, by sharing a control arm, to lower the probability of being assigned to a placebo arm for clinical trial participants. This paper is authored by select members of the American Statistical Association (ASA)/DahShu Master Protocol Working Group (MPWG) People and Patient Engagement (PE) Subteam. DahShu is a 501(c)(3) non-profit organization, founded to promote research and education in data science. This manuscript does not include direct feedback from US or non-US regulators, though multiple regulatory-related references are cited to confirm our observation that improving patient engagement is supported by regulators. This manuscript represents the authors' independent perspective on the Master Protocol; it does not represent the official policy or viewpoint of FDA or any other regulatory organization or the views of the authors' employers. The objective of this manuscript is to provide drug developers, contract research organizations (CROs), third party capital investors, patient advocacy groups (PAGs), and biopharmaceutical executives with a better understanding of how including the patient voice throughout MP development and conduct creates more efficient clinical trials. The PE Subteam also plans to publish a Plain Language Summary (PLS) of this publication for clinical trial participants, patients, caregivers, and the public as they seek to understand the risks and benefits of MP clinical trial participation.

7.
Clin Pharmacol Ther ; 114(4): 802-809, 2023 10.
Article in English | MEDLINE | ID: mdl-37489911

ABSTRACT

The decentralized clinical trial (DCT) approach is increasingly recognized as a means to accelerate the development of potential therapeutic interventions. DCTs have a crucial advantage over traditional clinical trials: patients are monitored in their environment using technology (e.g., wearables), that capture data as they continue in daily life. This narrative review outlines a gap analysis focused on the frameworks and guidance from expert working groups and regulatory agencies for the design and execution of DCTs. Eight DCT elements guided the analysis and summarized the frameworks and guidance: (1) suitability, (2) protocol, (3) investigational medicinal product (IMP) supply, (4) investigators and health care providers, (5) safety, (6) regulatory and ethics, (7) data and technology, and (8) engagement, communication, and advocacy. Based on the gap analysis, two key takeaways were identified: (1) a need for a comprehensive sustainability assessment of each DCT element; and (2) current frameworks and guidance provide recommendations on social sustainability and some on economic sustainability. DCTs are an essential evolution in healthcare research; however, more guidance related to a comprehensive assessment of designing and executing sustainable DCTs is needed. This is especially the case for environmental sustainability, including, for example, carbon footprint and disposal of IMPs and sensors.


Subject(s)
Clinical Trials as Topic , Humans
8.
JCO Precis Oncol ; 7: e2300170, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37285558
9.
Orphanet J Rare Dis ; 18(1): 79, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041605

ABSTRACT

BACKGROUND: Traditional clinical trials require tests and procedures that are administered in centralized clinical research sites, which are beyond the standard of care that patients receive for their rare and chronic diseases. The limited number of rare disease patients scattered around the world makes it particularly challenging to recruit participants and conduct these traditional clinical trials. MAIN BODY: Participating in clinical research can be burdensome, especially for children, the elderly, physically and cognitively impaired individuals who require transportation and caregiver assistance, or patients who live in remote locations or cannot afford transportation. In recent years, there is an increasing need to consider Decentralized Clinical Trials (DCT) as a participant-centric approach that uses new technologies and innovative procedures for interaction with participants in the comfort of their home. CONCLUSION: This paper discusses the planning and conduct of DCTs, which can increase the quality of trials with a specific focus on rare diseases.


Subject(s)
Caregivers , Rare Diseases , Aged , Child , Humans , Clinical Trials as Topic
11.
Paediatr Drugs ; 24(6): 657-669, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36241954

ABSTRACT

Many of the afflictions of children are rare diseases. This creates numerous drug development challenges related to small populations, including limited information about the disease state, enrollment challenges, and diminished incentives for pediatric development of novel therapies by pharmaceutical and biotechnology sponsors. We review selected innovations in clinical development that may partially mitigate some of these difficulties, starting with the concept of development efficiency for individual clinical trials, clinical programs (involving multiple trials for a single drug), and clinical portfolios of multiple drugs, and decision analysis as a tool to optimize efficiency. Development efficiency is defined as the ability to reach equally rigorous or more rigorous conclusions in less time, with fewer trial participants, or with fewer resources. We go on to discuss efficient methods for matching targeted therapies to biomarker-defined subgroups, methods for eliminating or reducing the need for natural history data to guide rare disease development, the use of basket trials to enhance efficiency by grouping multiple similar disease applications in a single clinical trial, and the use of alternative data sources including historical controls to augment or replace concurrent controls in clinical studies. Greater understanding and broader application of these methods could lead to improved therapies and/or more widespread and rapid access to novel therapies for rare diseases in both children and adults.


Subject(s)
Drug Development , Rare Diseases , Adult , Humans , Child , Rare Diseases/drug therapy , Biomarkers , Pharmaceutical Preparations
12.
Front Digit Health ; 4: 1007784, 2022.
Article in English | MEDLINE | ID: mdl-36274654

ABSTRACT

We are rapidly approaching a future in which cancer patient digital twins will reach their potential to predict cancer prevention, diagnosis, and treatment in individual patients. This will be realized based on advances in high performance computing, computational modeling, and an expanding repertoire of observational data across multiple scales and modalities. In 2020, the US National Cancer Institute, and the US Department of Energy, through a trans-disciplinary research community at the intersection of advanced computing and cancer research, initiated team science collaborative projects to explore the development and implementation of predictive Cancer Patient Digital Twins. Several diverse pilot projects were launched to provide key insights into important features of this emerging landscape and to determine the requirements for the development and adoption of cancer patient digital twins. Projects included exploring approaches to using a large cohort of digital twins to perform deep phenotyping and plan treatments at the individual level, prototyping self-learning digital twin platforms, using adaptive digital twin approaches to monitor treatment response and resistance, developing methods to integrate and fuse data and observations across multiple scales, and personalizing treatment based on cancer type. Collectively these efforts have yielded increased insights into the opportunities and challenges facing cancer patient digital twin approaches and helped define a path forward. Given the rapidly growing interest in patient digital twins, this manuscript provides a valuable early progress report of several CPDT pilot projects commenced in common, their overall aims, early progress, lessons learned and future directions that will increasingly involve the broader research community.

13.
Cancer Res Commun ; 2(7): 590-601, 2022 07.
Article in English | MEDLINE | ID: mdl-35832288

ABSTRACT

Inflammation is a cancer hallmark. Nonsteroidal anti-inflammatory drugs (NSAIDs) improve overall survival (OS) in certain cancers. Real-world studies explored here if NSAIDs improve non-small cell lung cancer (NSCLC) OS. Analyses independently interrogated clinical databases from The University of Texas MD Anderson Cancer Center (MDACC cohort, 1987 to 2015; 33,162 NSCLCs and 3,033 NSAID users) and Georgetown-MedStar health system (Georgetown cohort, 2000 to 2019; 4,497 NSCLCs and 1,993 NSAID users). Structured and unstructured clinical data were extracted from electronic health records (EHRs) using natural language processing (NLP). Associations were made between NSAID use and NSCLC prognostic features (tobacco use, gender, race, and body mass index, BMI). NSAIDs were statistically-significantly (P < 0.0001) associated with increased NSCLC survival (5-year OS 29.7% for NSAID users versus 13.1% for non-users) in the MDACC cohort. NSAID users gained 11.6 months over nonusers in 5-year restricted mean survival time. Stratified analysis by stage, histopathology and multicovariable assessment substantiated benefits. NSAID users were pooled independent of NSAID type and by NSAID type. Landmark analysis excluded immortal time bias. Survival improvements (P < 0.0001) were confirmed in the Georgetown cohort. Thus, real-world NSAID usage was independently associated with increased NSCLC survival in the MDACC and Georgetown cohorts. Findings were confirmed by landmark analyses and NSAID type. The OS benefits persisted despite tobacco use and did not depend on gender, race, or BMI (MDACC cohort, P < 0.0001). These real-world findings could guide future NSAID lung cancer randomized trials.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Inflammation , Prognosis
14.
PLoS One ; 17(6): e0265712, 2022.
Article in English | MEDLINE | ID: mdl-35749431

ABSTRACT

The FDA's Accelerated Approval program (AA) is a regulatory program to expedite availability of products to treat serious or life-threatening illnesses that lack effective treatment alternatives. Ideally, all of the many stakeholders such as patients, physicians, regulators, and health technology assessment [HTA] agencies that are affected by AA should benefit from it. In practice, however, there is intense debate over whether evidence supporting AA is sufficient to meet the needs of the stakeholders who collectively bring an approved product into routine clinical care. As AAs have become more common, it becomes essential to be able to determine their impact objectively and reproducibly in a way that provides for consistent evaluation of therapeutic decision alternatives. We describe the basic features of an approach for evaluating AA impact that accommodates stakeholder-specific views about potential benefits, risks, and costs. The approach is based on a formal decision-analytic framework combining predictive distributions for therapeutic outcomes (efficacy and safety) based on statistical models that incorporate findings from AA trials with stakeholder assessments of various actions that might be taken. The framework described here provides a starting point for communicating the value of a treatment granted AA in the context of what is important to various stakeholders.


Subject(s)
Drug Approval , Technology Assessment, Biomedical , Humans , Treatment Outcome , United States , United States Food and Drug Administration
16.
Stat Methods Med Res ; 31(7): 1207-1223, 2022 07.
Article in English | MEDLINE | ID: mdl-35404188

ABSTRACT

Basket trials pool histologic indications sharing molecular pathophysiology, improving development efficiency. Currently, basket trials have been confirmatory only for exceptional therapies. Our previous randomized basket design may be generally suitable in the resource-intensive confirmatory phase, maintains high power even with modest effect sizes, and provides nearly k-fold increased efficiency for k indications, but controls false positives for the pooled result only. Since family wise error rate by indications may sometimes be required, we now simulate a variant of this basket design controlling family wise error rate at 0.025k, the total family wise error rate of k separate randomized trials. We simulated this modified design under numerous scenarios varying design parameters. Only designs controlling family wise error rate and minimizing estimation bias were allowable. Optimal performance results when k=3,4. We report efficiency (expected # true positives/expected sample size) relative to k parallel studies, at 90% power ("uncorrected") or at the power achieved in the basket trial ("corrected," because conventional designs could also increase efficiency by sacrificing power). Efficiency and power (percentage active indications identified) improve with a higher percentage of initial indications active. Up to 92% uncorrected and 38% corrected efficiency improvement is possible. Even under family wise error rate control, randomized confirmatory basket trials substantially improve development efficiency. Initial indication selection is critical.


Subject(s)
Models, Statistical , Research Design , Bias , Sample Size
17.
Contemp Clin Trials ; 116: 106736, 2022 05.
Article in English | MEDLINE | ID: mdl-35331946

ABSTRACT

BACKGROUND: To identify and assess via simulation the impact of COVID-19 pandemic on oncology trials and discuss potential mitigation strategies for study design, data collection, endpoints and analyses. METHODS: We simulated clinical trials to evaluate the COVID-19 impact on overall survival and progression-free survival. We evaluated survival in single-region trials with different proportions of impacted patients across treatment arms, and in multi-region randomized trials with different proportions of impacted patients across regions. We also assessed the impact on PFS when the missingness of disease assessment and censoring rules vary. Impact on the trial success and robustness of statistical inference was summarized. RESULTS: Without regional impact, the impact on OS analysis is minimal if proportions of impacted patients are similar across arms, however, if a larger proportion of treatment arm patients are impacted, trials may suffer substantial power loss and underestimate treatment effect size. For multi-region trials, if more treatment arm patients are enrolled from more severely impacted regions, trials also have poorer performance. For PFS analysis, the intent-to-treat rule performs well even when the treatment arm patients are more likely to miss disease assessments, while the consecutive-missing censoring rule may lead to poorer performance. CONCLUSION: COVID-19 affects oncology trials. Simulations would be highly informative to Data Monitoring Committee in understanding the impact and making appropriate recommendations, upon which the sponsor could start planning potential remedies. We also recommend a decision tree for choosing the appropriate methods for PFS evaluation in the presence of missing disease assessments due to COVID-19.


Subject(s)
COVID-19 , Neoplasms , Clinical Trials as Topic , Data Collection , Humans , Neoplasms/therapy , Pandemics
18.
Stat Biopharm Res ; 14(1): 22-27, 2022.
Article in English | MEDLINE | ID: mdl-37006380

ABSTRACT

The coronavirus pandemic has brought public attention to the steps required to produce valid scientific clinical research in drug development. Traditional ethical principles that guide clinical research remain the guiding compass for physicians, patients, public health officials, investigators, drug developers and the public. Accelerating the process of delivering safe and effective treatments and vaccines against COVID-19 is a moral imperative. The apparent clash between the regulated system of phased randomized clinical trials and urgent public health need requires leveraging innovation with ethical scientific rigor. We reflect on the Belmont principles of autonomy, beneficence and justice as the pandemic unfolds, and illustrate the role of innovative clinical trial designs in alleviating pandemic challenges. Our discussion highlights selected types of innovative trial design and correlates them with ethical parameters and public health benefits. Details are provided for platform trials and other innovative designs such as basket and umbrella trials, designs leveraging external data sources, multi-stage seamless trials, preplanned control arm data sharing between larger trials, and higher order systems of linked trials coordinated more broadly between individual trials and phases of development, recently introduced conceptually as "PIPELINEs."

19.
Stat Methods Med Res ; 30(2): 396-410, 2021 02.
Article in English | MEDLINE | ID: mdl-32955400

ABSTRACT

Previous work has shown that individual randomized "proof-of-concept" (PoC) studies may be designed to maximize cost-effectiveness, subject to an overall PoC budget constraint. Maximizing cost-effectiveness has also been considered for arrays of simultaneously executed PoC studies. Defining Type III error as the opportunity cost of not performing a PoC study, we evaluate the common pharmaceutical practice of allocating PoC study funds in two stages. Stage 1, or the first wave of PoC studies, screens drugs to identify those to be permitted additional PoC studies in Stage 2. We investigate if this strategy significantly improves efficiency, despite slowing development. We quantify the benefit, cost, benefit-cost ratio, and Type III error given the number of Stage 1 PoC studies. Relative to a single stage PoC strategy, significant cost-effective gains are seen when at least one of the drugs has a low probability of success (10%) and especially when there are either few drugs (2) with a large number of indications allowed per drug (10) or a large portfolio of drugs (4). In these cases, the recommended number of Stage 1 PoC studies ranges from 2 to 4, tracking approximately with an inflection point in the minimization curve of Type III error.


Subject(s)
Pharmaceutical Preparations , Cost-Benefit Analysis , Proof of Concept Study
SELECTION OF CITATIONS
SEARCH DETAIL
...