Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Obes ; 2024: 5564810, 2024.
Article in English | MEDLINE | ID: mdl-38779349

ABSTRACT

Aims: The prevalence of obesity is rapidly increasing during the past decades. While previous research has focused on the early outcome after cardiac surgery or specific complications, the current study covers the whole burden of obesity in the field of cardiac surgery over short term and long term. Endpoints of the study were all-cause mortality, perioperative outcome, and wound-healing disorders (WHDs). Methods: 14.754 consecutive patients who underwent cardiac surgery over a 14 years' time period were analyzed. BMI classifications were used according to the WHO definition. Results: Mean survival was 11.95 years ± 0.1; CI 95% [12.04-12.14]. After adjustment for clinical baseline characteristics, obesity classes' I-III (obesity) did not affect 30-day mortality or all-cause mortality during the whole observational period. After adjustment for known risk factors, the risk for WHDs doubled at least in obesity patients as follows: obesity I (OR = 2.06; CI 95% [1.7-2.5]; p < 0.0001), obesity II (OR = 2.5; CI 95% [1.83-3.41]; p < 0.0001), and obesity III (OR = 4.12; CI 95% [2.52-6.74]; p < 0.0001). The same applies to the risk for sternal reconstruction that is substantially elevated in obesity I (OR = 2.23; CI 95% [1.75-2.83]; p < 0.0001), obesity II (OR = 2.81; CI 95% [1.91-4.13]; p < 0.0001), and obesity III (OR = 2.31; CI 95% [1.08-4.97]; p=0.03). No significant correlation could be found between obesity and major adverse events in the perioperative course like renal failure, ventilation >24 h, re-exploration, or cerebrovascular events. Conclusions: Cardiac surgery is safe in obesity as short- and long-term mortality are not increased, and major adverse events during the perioperative course are similar to control patients. The burden of obesity lies in substantially increased rates of wound-healing disorders and sternal reconstructions.


Subject(s)
Cardiac Surgical Procedures , Obesity , Postoperative Complications , Humans , Male , Female , Cardiac Surgical Procedures/adverse effects , Obesity/complications , Obesity/surgery , Middle Aged , Aged , Follow-Up Studies , Postoperative Complications/epidemiology , Postoperative Complications/mortality , Risk Factors , Body Mass Index , Prevalence
2.
Mar Pollut Bull ; 197: 115755, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37976591

ABSTRACT

Shipping is the most pervasive source of marine noise pollution globally, yet its impact on sensitive fauna remains unclear. We tracked 10 harbour porpoises for 5-10 days to determine exposure and behavioural reactions to modelled broadband noise (10 Hz-20 kHz, VHF-weighted) from individual ships monitored by AIS. Porpoises spent a third of their time experiencing ship noise above ambient, to which they regularly reacted by moving away during daytime and diving deeper during night. However, even ships >2 km away (noise levels of 93 ± 14 dB re 1 µPa2) caused animals to react 5-9 % of the time (∼18.6 ships/day). Ships can thus influence the behaviour and habitat use of cetaceans over long distances, with worrying implications for fitness in coastal areas where anthropogenic noise from dense ship traffic repeatedly disrupt their natural behaviour.


Subject(s)
Phocoena , Porpoises , Animals , Noise , Ships , Ecosystem , Cetacea
3.
PLoS Genet ; 17(6): e1009585, 2021 06.
Article in English | MEDLINE | ID: mdl-34061833

ABSTRACT

Small proteins play essential roles in bacterial physiology and virulence, however, automated algorithms for genome annotation are often not yet able to accurately predict the corresponding genes. The accuracy and reliability of genome annotations, particularly for small open reading frames (sORFs), can be significantly improved by integrating protein evidence from experimental approaches. Here we present a highly optimized and flexible bioinformatics workflow for bacterial proteogenomics covering all steps from (i) generation of protein databases, (ii) database searches and (iii) peptide-to-genome mapping to (iv) visualization of results. We used the workflow to identify high quality peptide spectrum matches (PSMs) for small proteins (≤ 100 aa, SP100) in Staphylococcus aureus Newman. Protein extracts from S. aureus were subjected to different experimental workflows for protein digestion and prefractionation and measured with highly sensitive mass spectrometers. In total, 175 proteins with up to 100 aa (SP100) were identified. Out of these 24 (ranging from 9 to 99 aa) were novel and not contained in the used genome annotation.144 SP100 are highly conserved and were found in at least 50% of the publicly available S. aureus genomes, while 127 are additionally conserved in other staphylococci. Almost half of the identified SP100 were basic, suggesting a role in binding to more acidic molecules such as nucleic acids or phospholipids.


Subject(s)
Bacterial Proteins/metabolism , Proteogenomics/methods , Staphylococcus aureus/metabolism , Bacterial Proteins/genetics , Computer Simulation , Databases, Protein , Mass Spectrometry/methods , Molecular Sequence Annotation , Open Reading Frames , Peptide Hydrolases/metabolism , Phylogeny , Staphylococcus aureus/genetics
5.
J Acoust Soc Am ; 148(2): 780, 2020 08.
Article in English | MEDLINE | ID: mdl-32872988

ABSTRACT

Regulations for underwater anthropogenic noise are typically formulated in terms of peak sound pressure, root-mean-square sound pressure, and (weighted or unweighted) sound exposure. Sound effect studies on humans and other terrestrial mammals suggest that in addition to these metrics, the impulsiveness of sound (often quantified by its kurtosis ß) is also related to the risk of hearing impairment. Kurtosis is often used to distinguish between ambient noise and transients, such as echolocation clicks and dolphin whistles. A lack of standardization of the integration interval leads to ambiguous kurtosis values, especially for transient signals. In the current research, kurtosis is applied to transient signals typical for high-power underwater noise. For integration time (t2-t1), the quantity (t2-t1)/ß is shown to be a robust measure of signal duration, closely related to the effective signal duration, τeff for sounds from airguns, pile driving, and explosions. This research provides practical formulas for kurtosis of impulsive sounds and compares kurtosis between measurements of transient sounds from different sources.


Subject(s)
Dolphins , Echolocation , Animals , Noise/adverse effects , Sound , Sound Spectrography
6.
J Acoust Soc Am ; 148(2): 556, 2020 08.
Article in English | MEDLINE | ID: mdl-32872990

ABSTRACT

Noise-induced temporary hearing threshold shift (TTS) was studied in a harbor porpoise exposed to impulsive sounds of scaled-down airguns while both stationary and free-swimming for up to 90 min. In a previous study, ∼4 dB TTS was elicited in this porpoise, but despite 8 dB higher single-shot and cumulative exposure levels (up to 199 dB re 1 µPa2s) in the present study, the porpoise showed no significant TTS at hearing frequencies 2, 4, or 8 kHz. There were no changes in the study animal's audiogram between the studies or significant differences in the fatiguing sound that could explain the difference, but audible and visual cues in the present study may have allowed the porpoise to predict when the fatiguing sounds would be produced. The discrepancy between the studies may have resulted from self-mitigation by the porpoise. Self-mitigation, resulting in reduced hearing sensitivity, can be achieved via changes in the orientation of the head, or via alteration of the hearing threshold by processes in the ear or central nervous system.


Subject(s)
Phocoena , Acoustic Stimulation , Animals , Auditory Fatigue , Auditory Threshold , Hearing , Recovery of Function , Reproducibility of Results , Time Factors
7.
J Exp Biol ; 223(Pt 10)2020 05 27.
Article in English | MEDLINE | ID: mdl-32321748

ABSTRACT

Group-living animals must communicate to stay in contact. In long-finned pilot whales, there is a trade-off between the benefits of foraging individually at depth and the formation of tight social groups at the surface. Using theoretical modelling and empirical data of tagged pairs within a group, we examined the potential of pilot whale social calls to reach dispersed group members during foraging periods. Both theoretical predictions and empirical data of tag pairs showed a potential for communication between diving and non-diving group members over separation distances up to 385 m (empirical) and 1800 m (theoretical). These distances match or exceed pilot whale dive depths recorded across populations. Call characteristics and environmental characteristics were analysed to investigate determinants of call detectability. Longer calls with a higher sound pressure level (SPL) that were received in a quieter environment were more often detected than their shorter, lower SPL counterparts within a noisier environment. In a noisier environment, calls were louder and had a lower peak frequency, indicating mechanisms for coping with varying conditions. However, the vulnerability of pilot whales to anthropogenic noise is still of concern as the ability to cope with increasing background noise may be limited. Our study shows that combining propagation modelling and actual tag recordings provides new insights into the communicative potential for social calls in orientation and reunion with group members for deep-diving pilot whales.


Subject(s)
Fin Whale , Whales, Pilot , Animals , Vocalization, Animal
8.
J Exp Biol ; 223(Pt 7)2020 04 08.
Article in English | MEDLINE | ID: mdl-32107307

ABSTRACT

Anthropogenic noise sources range from intermittent to continuous, with seismic and navy sonar technology moving towards near-continuous transmissions. Continuous active sonar (CAS) may be used at a lower amplitude than traditional pulsed active sonar (PAS), but potentially with greater cumulative sound energy. We conducted at-sea experiments to contrast the effects of navy PAS versus CAS on sperm whale behaviour using animal-attached sound- and movement-recording tags (n=16 individuals) in Norway. Changes in foraging effort and proxies for foraging success and cost during sonar and control exposures were assessed while accounting for baseline variation [individual effects, time of day, bathymetry and blackfish (pilot/killer whale) presence] in generalized additive mixed models (GAMMs). We found no reduction in time spent foraging during exposures to medium-level PAS (MPAS) transmitted at the same peak amplitude as CAS. In contrast, we found similar reductions in foraging during CAS (d.f.=1, F=8.0, P=0.005) and higher amplitude PAS (d.f.=1, F=20.8, P<0.001) when received at similar energy levels integrated over signal duration. These results provide clear support for sound energy over amplitude as the response driver. We discuss the importance of exposure context and the need to measure cumulative sound energy to account for intermittent versus more continuous sources in noise impact assessments.


Subject(s)
Sperm Whale , Whale, Killer , Acoustics , Animals , Noise/adverse effects , Norway , Sound
9.
Proc Biol Sci ; 286(1899): 20182592, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30890101

ABSTRACT

Impact assessments for sonar operations typically use received sound levels to predict behavioural disturbance in marine mammals. However, there are indications that cetaceans may learn to associate exposures from distant sound sources with lower perceived risk. To investigate the roles of source distance and received level in an area without frequent sonar activity, we conducted multi-scale controlled exposure experiments ( n = 3) with 12 northern bottlenose whales near Jan Mayen, Norway. Animals were tagged with high-resolution archival tags ( n = 1 per experiment) or medium-resolution satellite tags ( n = 9 in total) and subsequently exposed to sonar. We also deployed bottom-moored recorders to acoustically monitor for whales in the exposed area. Tagged whales initiated avoidance of the sound source over a wide range of distances (0.8-28 km), with responses characteristic of beaked whales. Both onset and intensity of response were better predicted by received sound pressure level (SPL) than by source distance. Avoidance threshold SPLs estimated for each whale ranged from 117-126 dB re 1 µPa, comparable to those of other tagged beaked whales. In this pristine underwater acoustic environment, we found no indication that the source distances tested in our experiments modulated the behavioural effects of sonar, as has been suggested for locations where whales are frequently exposed to sonar.


Subject(s)
Noise/adverse effects , Swimming , Whales/physiology , Acoustic Stimulation , Animals , Arctic Regions , Norway , Oceans and Seas
10.
J Acoust Soc Am ; 143(2): 954, 2018 02.
Article in English | MEDLINE | ID: mdl-29495736

ABSTRACT

Passive acoustic monitoring with widely-dispersed hydrophones has been suggested as a cost-effective method to monitor population densities of echolocating marine mammals. This requires an estimate of the area around each receiver over which vocalizations are detected-the "effective detection area" (EDA). In the absence of auxiliary measurements enabling estimation of the EDA, it can be modelled instead. Common simplifying model assumptions include approximating the spectrum of clicks by flat energy spectra, and neglecting the frequency-dependence of sound absorption within the click bandwidth (narrowband assumption), rendering the problem amenable to solution using the sonar equation. Here, it is investigated how these approximations affect the estimated EDA and their potential for biasing the estimated density. EDA was estimated using the passive sonar equation, and by applying detectors to simulated clicks injected into measurements of background noise. By comparing model predictions made using these two approaches for different spectral energy distributions of echolocation clicks, but identical click source energy level and detector settings, EDA differed by up to a factor of 2 for Blainville's beaked whales. Both methods predicted relative density bias due to narrowband assumptions ranged from 5% to more than 100%, depending on the species, detector settings, and noise conditions.

11.
Entropy (Basel) ; 20(9)2018 Sep 06.
Article in English | MEDLINE | ID: mdl-33265769

ABSTRACT

Due to the failure of the continuum hypothesis for higher Knudsen numbers, rarefied gases and microflows of gases are particularly difficult to model. Macroscopic transport equations compete with particle methods, such as the Direct Simulation Monte Carlo method (DSMC), to find accurate solutions in the rarefied gas regime. Due to growing interest in micro flow applications, such as micro fuel cells, it is important to model and understand evaporation in this flow regime. Here, evaporation boundary conditions for the R13 equations, which are macroscopic transport equations with applicability in the rarefied gas regime, are derived. The new equations utilize Onsager relations, linear relations between thermodynamic fluxes and forces, with constant coefficients, that need to be determined. For this, the boundary conditions are fitted to DSMC data and compared to other R13 boundary conditions from kinetic theory and Navier-Stokes-Fourier (NSF) solutions for two one-dimensional steady-state problems. Overall, the suggested fittings of the new phenomenological boundary conditions show better agreement with DSMC than the alternative kinetic theory evaporation boundary conditions for R13. Furthermore, the new evaporation boundary conditions for R13 are implemented in a code for the numerical solution of complex, two-dimensional geometries and compared to NSF solutions. Different flow patterns between R13 and NSF for higher Knudsen numbers are observed.

12.
J Exp Biol ; 220(Pt 22): 4150-4161, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29141878

ABSTRACT

Exposure to underwater sound can cause permanent hearing loss and other physiological effects in marine animals. To reduce this risk, naval sonars are sometimes gradually increased in intensity at the start of transmission ('ramp-up'). Here, we conducted experiments in which tagged humpback whales were approached with a ship to test whether a sonar operation preceded by ramp-up reduced three risk indicators - maximum sound pressure level (SPLmax), cumulative sound exposure level (SELcum) and minimum source-whale range (Rmin) - compared with a sonar operation not preceded by ramp-up. Whales were subject to one no-sonar control session and either two successive ramp-up sessions (RampUp1, RampUp2) or a ramp-up session (RampUp1) and a full-power session (FullPower). Full-power sessions were conducted only twice; for other whales we used acoustic modelling that assumed transmission of the full-power sequence during their no-sonar control. Averaged over all whales, risk indicators in RampUp1 (n=11) differed significantly from those in FullPower (n=12) by -3.0 dB (SPLmax), -2.0 dB (SELcum) and +168 m (Rmin), but not significantly from those in RampUp2 (n=9). Only five whales in RampUp1, four whales in RampUp2 and none in FullPower or control sessions avoided the sound source. For RampUp1, we found statistically significant differences in risk indicators between whales that avoided the sonar and whales that did not: -4.7 dB (SPLmax), -3.4 dB (SELcum) and +291 m (Rmin). In contrast, for RampUp2, these differences were smaller and not significant. This study suggests that sonar ramp-up has a positive but limited mitigative effect for humpback whales overall, but that ramp-up can reduce the risk of harm more effectively in situations when animals are more responsive and likely to avoid the sonar, e.g. owing to novelty of the stimulus, when they are in the path of an approaching sonar ship.


Subject(s)
Acoustics , Humpback Whale/physiology , Noise , Ships , Animals
13.
J Acoust Soc Am ; 142(4): 2430, 2017 10.
Article in English | MEDLINE | ID: mdl-29092610

ABSTRACT

In seismic surveys, reflected sounds from airguns are used under water to detect gas and oil below the sea floor. The airguns produce broadband high-amplitude impulsive sounds, which may cause temporary or permanent threshold shifts (TTS or PTS) in cetaceans. The magnitude of the threshold shifts and the hearing frequencies at which they occur depend on factors such as the received cumulative sound exposure level (SELcum), the number of exposures, and the frequency content of the sounds. To quantify TTS caused by airgun exposure and the subsequent hearing recovery, the hearing of a harbor porpoise was tested by means of a psychophysical technique. TTS was observed after exposure to 10 and 20 consecutive shots fired from two airguns simultaneously (SELcum: 188 and 191 dB re 1 µPa2s) with mean shot intervals of around 17 s. Although most of the airgun sounds' energy was below 1 kHz, statistically significant initial TTS1-4 (1-4 min after sound exposure stopped) of ∼4.4 dB occurred only at the hearing frequency 4 kHz, and not at lower hearing frequencies tested (0.5, 1, and 2 kHz). Recovery occurred within 12 min post-exposure. The study indicates that frequency-weighted SELcum is a good predictor for the low levels of TTS observed.


Subject(s)
Auditory Fatigue , Behavior, Animal , Environmental Exposure/adverse effects , Noise/adverse effects , Phocoena/psychology , Acoustic Stimulation , Acoustics , Animals , Hearing , Male , Phocoena/physiology , Psychoacoustics , Recovery of Function , Risk Assessment , Sound Spectrography , Time Factors
14.
Eur J Radiol ; 90: 6-13, 2017 May.
Article in English | MEDLINE | ID: mdl-28583648

ABSTRACT

OBJECTIVES: To address whether Indocyanine Green (ICG) enhanced fluorescence optical imaging (FOI) is more sensitive than magnetic resonance imaging (MRI) in the detection of synovitis of the wrist and finger joints in rheumatoid arthritis and to analyze the performance of FOI depending on the grade of synovitis. METHODS: Twenty patients with highly active rheumatoid arthritis (mean DAS28-ESR 5.25±1.0) and thirteen healthy volunteers underwent clinical examination, FOI and contrast-enhanced 3T-MRI. Joints were rated by three independent readers semiquantitatively (grade 0-3: no, low, moderate and high grade synovitis) and compared to a semiquantitative composite standard of reference (cSOR, grade 0-3) that incorporated clinical parameters, FOI and MRI results. RESULTS: 2.868 evaluations in 956 joints were performed. FOI had an overall sensitivity of 57.3% and a specificity of 92.1%, whereas MRI had a sensitivity of 89.2% and a specificity of 92.6%. The sensitivity of FOI increased with the degree of synovitis to 65.0% for moderate and severe synovitis (specificity 88.1%) and 76,3% for severe synovitis (specificity 80.5%). The performance of FOI decreased with the degree of synovitis with false negative results predominantly for mild (156/343, 45.5%) and moderate (160/343, 46.6%) synovitis and false positive FOI evaluations predominantly based on weak (grade 1) signals (133/163, 81,6%). CONCLUSION: FOI has a lower sensitivity than 3T-MRI in the detection of synovitis of the hand and finger joints. The diagnostic performance of FOI decreases with the degree of synovitis and with the strength of FOI signals.


Subject(s)
Arthritis, Rheumatoid/diagnosis , Finger Joint/physiology , Fluorescence , Magnetic Resonance Imaging/methods , Optical Imaging/methods , Wrist Joint/physiology , Humans , Sensitivity and Specificity , Synovitis
16.
J Exp Biol ; 219(Pt 15): 2271-5, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27229472

ABSTRACT

Sound-recording acoustic tags attached to marine animals are commonly used in behavioural studies. Measuring ambient noise is of interest to efforts to understand responses of marine mammals to anthropogenic underwater sound, or to assess their communication space. Noise of water flowing around the tag reflects the speed of the animal, but hinders ambient noise measurement. Here, we describe a correlation-based method for stereo acoustic tags to separate the relative contributions of flow and ambient noise. The uncorrelated part of the noise measured in digital acoustic recording tag (DTAG) recordings related well to swim speed of a humpback whale (Megaptera novaeangliae), thus providing a robust measure of flow noise over a wide frequency bandwidth. By removing measurements affected by flow noise, consistent ambient noise estimates were made for two killer whales (Orcinus orca) with DTAGs attached simultaneously. The method is applicable to any multi-channel acoustic tag, enabling application to a wide range of marine species.


Subject(s)
Acoustics , Humpback Whale/physiology , Noise , Rheology , Animals , Pressure , Swimming/physiology
17.
Adv Exp Med Biol ; 875: 589-98, 2016.
Article in English | MEDLINE | ID: mdl-26611008

ABSTRACT

In mitigating the risk of sonar operations, the behavioral response of cetaceans is one of the major knowledge gaps that needs to be addressed. The 3S-Project has conducted a number of controlled exposure experiments with a realistic sonar source in Norwegian waters from 2006 to 2013. In total, the following six target species have been studied: killer, long-finned pilot, sperm, humpback, minke, and northern bottlenose whales. A total of 38 controlled sonar exposures have been conducted on these species. Responses from controlled and repeated exposure runs have been recorded using acoustic and visual observations as well as with electronic tags on the target animal. So far, the first dose-response curves as well as an overview of the scored severity of responses have been revealed. In this paper, an overview is presented of the approach for the study, including the results so far as well as the current status of the ongoing analysis.


Subject(s)
Cetacea/physiology , Environmental Exposure , Seawater , Sound , Animals , Behavior, Animal , Norway
18.
Adv Exp Med Biol ; 875: 1001-6, 2016.
Article in English | MEDLINE | ID: mdl-26611061

ABSTRACT

The European Union requires member states to achieve or maintain good environmental status for their marine territorial waters and explicitly mentions potentially adverse effects of underwater sound. In this study, we focused on producing maps of underwater sound from various natural and anthropogenic origins in the Dutch North Sea. The source properties and sound propagation are simulated by mathematical methods. These maps could be used to assess and predict large-scale effects on behavior and distribution of underwater marine life and therefore become a valuable tool in assessing and managing the impact of underwater sound on marine life.


Subject(s)
Acoustics , Seawater , Sound , Netherlands , North Sea , Pressure , Ships
19.
Adv Exp Med Biol ; 875: 1197-203, 2016.
Article in English | MEDLINE | ID: mdl-26611087

ABSTRACT

Ramp-up procedures are used to mitigate the impact of sound on marine mammals. Sound exposure models combined with observations of marine mammals responding to sound can be used to assess the effectiveness of ramp-up procedures. We found that ramp-up procedures before full-level sonar operations can reduce the risk of hearing threshold shifts with marine mammals, but their effectiveness depends strongly on the responsiveness of the animals. In this paper, we investigated the effect of sonar parameters (source level, pulse-repetition time, ship speed) on sound exposure by using a simple analytical model and highlight the mechanisms that limit the effectiveness of ramp-up procedures.


Subject(s)
Environmental Exposure , Models, Theoretical , Sound , Animals
20.
Mar Environ Res ; 106: 68-81, 2015 May.
Article in English | MEDLINE | ID: mdl-25795075

ABSTRACT

The behaviour of a marine mammal near a noise source can modulate the sound exposure it receives. We demonstrate that two long-finned pilot whales both surfaced in synchrony with consecutive arrivals of multiple sonar pulses. We then assess the effect of surfacing and other behavioural response strategies on the received cumulative sound exposure levels and maximum sound pressure levels (SPLs) by modelling realistic spatiotemporal interactions of a pilot whale with an approaching source. Under the propagation conditions of our model, some response strategies observed in the wild were effective in reducing received levels (e.g. movement perpendicular to the source's line of approach), but others were not (e.g. switching from deep to shallow diving; synchronous surfacing after maximum SPLs). Our study exemplifies how simulations of source-whale interactions guided by detailed observational data can improve our understanding about motivations behind behaviour responses observed in the wild (e.g., reducing sound exposure, prey movement).


Subject(s)
Behavior, Animal/physiology , Noise , Whales, Pilot/physiology , Animals , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...