Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Environ Sci Technol ; 55(1): 120-128, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33325230

ABSTRACT

Short-term exposure to fine particulate matter (PM2.5) pollution is linked to numerous adverse health effects. Pollution episodes, such as wildfires, can lead to substantial increases in PM2.5 levels. However, sparse regulatory measurements provide an incomplete understanding of pollution gradients. Here, we demonstrate an infrastructure that integrates community-based measurements from a network of low-cost PM2.5 sensors with rigorous calibration and a Gaussian process model to understand neighborhood-scale PM2.5 concentrations during three pollution episodes (July 4, 2018, fireworks; July 5 and 6, 2018, wildfire; Jan 3-7, 2019, persistent cold air pool, PCAP). The firework/wildfire events included 118 sensors in 84 locations, while the PCAP event included 218 sensors in 138 locations. The model results accurately predict reference measurements during the fireworks (n: 16, hourly root-mean-square error, RMSE, 12.3-21.5 µg/m3, n(normalized)RMSE: 14.9-24%), the wildfire (n: 46, RMSE: 2.6-4.0 µg/m3; nRMSE: 13.1-22.9%), and the PCAP (n: 96, RMSE: 4.9-5.7 µg/m3; nRMSE: 20.2-21.3%). They also revealed dramatic geospatial differences in PM2.5 concentrations that are not apparent when only considering government measurements or viewing the US Environmental Protection Agency's AirNow visualizations. Complementing the PM2.5 estimates and visualizations are highly resolved uncertainty maps. Together, these results illustrate the potential for low-cost sensor networks that combined with a data-fusion algorithm and appropriate calibration and training can dynamically and with improved accuracy estimate PM2.5 concentrations during pollution episodes. These highly resolved uncertainty estimates can provide a much-needed strategy to communicate uncertainty to end users.


Subject(s)
Air Pollutants , Air Pollution , Wildfires , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring , Particulate Matter/analysis
3.
Environ Res ; 186: 109543, 2020 07.
Article in English | MEDLINE | ID: mdl-32348936

ABSTRACT

Previous studies have cataloged social disparities in air pollution exposure in US public schools with respect to race/ethnicity and socioeconomic status. These studies rely upon chronic, averaged measures of air pollution, which fosters a static conception of exposure disparities. This paper examines PM2.5 exposure disparities in Salt Lake County (SLC), Utah public schools under three different PM2.5 scenarios-relatively clean air, a moderate winter persistent cold air pool (PCAP), and a major winter PCAP-with respect to race/ethnicity, economic deprivation, student age, and school type. We pair demographic data for SLC schools (n = 174) with modelled PM2.5 values, obtained from a distributed network of sensors placed through a community-university partnership. Results from generalized estimating equations controlling for school district clustering and other covariates reveal that patterns of social inequality vary under different PM2.5 pollution scenarios. Charter schools and schools serving economically deprived students experienced disproportionate exposure during relatively clean air and moderate PM2.5 PCAP conditions, but those inequalities attenuated under major PCAP conditions. Schools with higher proportions of racial/ethnic minority students were unequally exposed under all PM2.5 pollution scenarios, reflecting the robustness of racial/ethnic disparities in exposure. The findings speak to the need for policy changes to protect school-aged children from environmental harm in SLC and elsewhere.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Child , Environmental Exposure , Ethnicity , Humans , Lakes , Minority Groups , Particulate Matter/analysis , Schools , Utah
SELECTION OF CITATIONS
SEARCH DETAIL
...