Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 145(4): 044710, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27475389

ABSTRACT

Adsorption and dissociation of gaseous carbon monoxide (CO) on metal surfaces is one of the most frequently occurring processes of carburisation, known as primary initiator of metal dusting corrosion. Among the various factors that can significantly influence the carburisation process are the intrinsic surface defects such as single surface vacancies occurring at high concentrations due to their low formation energy. Intuitively, adsorption and dissociation barriers of CO are expected to be lowered in the vicinity of a surface vacancy, due to the strong attractive interaction between the vacancy and the C atom. Here the adsorption energies and dissociation pathways of CO on clean and defective Fe 110 surface are explored by means of density functional theory. Interestingly, we find that the O adatom, resulting from the CO dissociation, is unstable in the electron-deficit neighbourhood of the vacancy due to its large electron affinity, and raises the barrier of the carburisation pathway. Still, a full comparative study between the clean surface and the vacancy-defected surface reveals that the complete process of carburisation, starting from adsorption to subsurface diffusion of C, is more favourable in the vicinity of a vacancy defect.

2.
Phys Rev Lett ; 97(19): 196402, 2006 Nov 10.
Article in English | MEDLINE | ID: mdl-17155647

ABSTRACT

We use state of the art ab initio calculations to obtain the diffusion properties of He in tungsten. The calculated migration energy of He is very low, around 0.06 eV. This value is much lower than the experimental field-ion microscopy results which lead to a migration energy of the order of 0.24-0.32 eV. The reason for this discrepancy is the high propensity for He to form He-He clusters characterized by a very large binding energy of the order of 1 eV. Such a large binding energy indicates that He atoms can be trapped by other He atoms and can explain the formation of He blisters close to the surface of He implanted tungsten.

SELECTION OF CITATIONS
SEARCH DETAIL
...