Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Physiol Meas ; 44(3)2023 03 10.
Article in English | MEDLINE | ID: mdl-36896841

ABSTRACT

Objective. Automatic detection of Electrocardiograms (ECG) quality is fundamental to minimize costs and risks related to delayed diagnosis due to low ECG quality. Most algorithms to assess ECG quality include non-intuitive parameters. Also, they were developed using data non-representative of a real-world scenario, in terms of pathological ECGs and overrepresentation of low-quality ECG. Therefore, we introduce an algorithm to assess 12-lead ECG quality, Noise Automatic Classification Algorithm (NACA) developed in Telehealth Network of Minas Gerais (TNMG).Approach. NACA estimates a signal-to-noise ratio (SNR) for each ECG lead, where 'signal' is an estimated heartbeat template, and 'noise' is the discrepancy between the template and the ECG heartbeat. Then, clinically-inspired rules based on SNR are used to classify the ECG as acceptable or unacceptable. NACA was compared with Quality Measurement Algorithm (QMA), the winner of Computing in Cardiology Challenge 2011 (ChallengeCinC) by using five metrics: sensitivity (Se), specificity (Sp), positive predictive value (PPV),F2, and cost reduction resulting from adoption of the algorithm. Two datasets were used for validation: TestTNMG, consisting of 34 310 ECGs received by TNMG (1% unacceptable and 50% pathological); ChallengeCinC, consisting of 1000 ECGs (23% unacceptable, higher than real-world scenario).Main results. Both algorithms reached a similar performance on ChallengeCinC, although NACA performed considerably better than QMA in TestTNMG (Se = 0.89 versus 0.21; Sp = 0.99 versus 0.98; PPV = 0.59 versus 0.08;F2= 0.76 versus 0.16 and cost reduction 2.3 ± 1.8% versus 0.3 ± 0.3%, respectively).Significance. Implementing of NACA in a telecardiology service results in evident health and financial benefits for the patients and the healthcare system.


Subject(s)
Signal Processing, Computer-Assisted , Telemedicine , Humans , Electrocardiography/methods , Heart Rate , Algorithms
2.
J Clin Med ; 11(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35806990

ABSTRACT

(1) Background: Individual PEEP settings (PEEPIND) may improve intraoperative oxygenation and optimize lung mechanics. However, there is uncertainty concerning the optimal procedure to determine PEEPIND. In this secondary analysis of a randomized controlled clinical trial, we compared different methods for PEEPIND determination. (2) Methods: Offline analysis of decremental PEEP trials was performed and PEEPIND was retrospectively determined according to five different methods (EIT-based: RVDI method, Global Inhomogeneity Index [GI], distribution of tidal ventilation [EIT VT]; global dynamic and quasi-static compliance). (3) Results: In the 45 obese and non-obese patients included, PEEPIND using the RVDI method (PEEPRVD) was 16.3 ± 4.5 cm H2O. Determination of PEEPIND using the GI and EIT VT resulted in a mean difference of −2.4 cm H2O (95%CI: −1.2;−3.6 cm H2O, p = 0.01) and −2.3 cm H2O (95% CI: −0.9;3.7 cm H2O, p = 0.01) to PEEPRVD, respectively. PEEPIND selection according to quasi-static compliance showed the highest agreement with PEEPRVD (p = 0.67), with deviations > 4 cm H2O in 3/42 patients. PEEPRVD and PEEPIND according to dynamic compliance also showed a high level of agreement, with deviations > 4 cm H2O in 5/42 patients (p = 0.57). (4) Conclusions: High agreement of PEEPIND determined by the RVDI method and compliance-based methods suggests that, for routine clinical practice, PEEP selection based on best quasi-static or dynamic compliance is favorable.

3.
Am J Vet Res ; 83(2): 162-170, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34851854

ABSTRACT

OBJECTIVE: To develop a method based on CT angiography and the maximum slope model (MSM) to measure regional lung perfusion in anesthetized ponies. ANIMALS: 6 ponies. PROCEDURES: Anesthetized ponies were positioned in dorsal recumbency in the CT gantry. Contrast was injected, and the lungs were imaged while ponies were breathing spontaneously and while they were mechanically ventilated. Two observers delineated regions of interest in aerated and atelectatic lung, and perfusion in those regions was calculated with the MSM. Measurements obtained with a computerized method were compared with manual measurements, and computerized measurements were compared with previously reported measurements obtained with microspheres. RESULTS: Perfusion measurements obtained with the MSM were similar to previously reported values obtained with the microsphere method. While ponies were spontaneously breathing, mean ± SD perfusion for aerated and atelectatic lung regions were 4.0 ± 1.9 and 5.0 ± 1.2 mL/min/g of lung tissue, respectively. During mechanical ventilation, values were 4.6 ± 1.2 and 2.7 ± 0.7 mL/min/g of lung tissue at end expiration and 4.1 ± 0.5 and 2.7 ± 0.6 mL/min/g of lung tissue at peak inspiration. Intraobserver agreement was acceptable, but interobserver agreement was lower. Computerized measurements compared well with manual measurements. CLINICAL RELEVANCE: Findings showed that CT angiography and the MSM could be used to measure regional lung perfusion in dorsally recumbent anesthetized ponies. Measurements are repeatable, suggesting that the method could be used to determine efficacy of therapeutic interventions to improve ventilation-perfusion matching and for other studies for which measurement of regional lung perfusion is necessary.


Subject(s)
Computed Tomography Angiography , Lung , Animals , Computed Tomography Angiography/veterinary , Horses , Lung/diagnostic imaging , Perfusion/veterinary , Respiration , Tomography, X-Ray Computed/veterinary
4.
Anesthesiology ; 134(6): 887-900, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33843980

ABSTRACT

BACKGROUND: General anesthesia may cause atelectasis and deterioration in oxygenation in obese patients. The authors hypothesized that individualized positive end-expiratory pressure (PEEP) improves intraoperative oxygenation and ventilation distribution compared to fixed PEEP. METHODS: This secondary analysis included all obese patients recruited at University Hospital of Leipzig from the multicenter Protective Intraoperative Ventilation with Higher versus Lower Levels of Positive End-Expiratory Pressure in Obese Patients (PROBESE) trial (n = 42) and likewise all obese patients from a local single-center trial (n = 54). Inclusion criteria for both trials were elective laparoscopic abdominal surgery, body mass index greater than or equal to 35 kg/m2, and Assess Respiratory Risk in Surgical Patients in Catalonia (ARISCAT) score greater than or equal to 26. Patients were randomized to PEEP of 4 cm H2O (n = 19) or a recruitment maneuver followed by PEEP of 12 cm H2O (n = 21) in the PROBESE study. In the single-center study, they were randomized to PEEP of 5 cm H2O (n = 25) or a recruitment maneuver followed by individualized PEEP (n = 25) determined by electrical impedance tomography. Primary endpoint was Pao2/inspiratory oxygen fraction before extubation and secondary endpoints included intraoperative tidal volume distribution to dependent lung and driving pressure. RESULTS: Ninety patients were evaluated in three groups after combining the two lower PEEP groups. Median individualized PEEP was 18 (interquartile range, 16 to 22; range, 10 to 26) cm H2O. Pao2/inspiratory oxygen fraction before extubation was 515 (individual PEEP), 370 (fixed PEEP of 12 cm H2O), and 305 (fixed PEEP of 4 to 5 cm H2O) mmHg (difference to individualized PEEP, 145; 95% CI, 91 to 200; P < 0.001 for fixed PEEP of 12 cm H2O and 210; 95% CI, 164 to 257; P < 0.001 for fixed PEEP of 4 to 5 cm H2O). Intraoperative tidal volume in the dependent lung areas was 43.9% (individualized PEEP), 25.9% (fixed PEEP of 12 cm H2O) and 26.8% (fixed PEEP of 4 to 5 cm H2O) (difference to individualized PEEP: 18.0%; 95% CI, 8.0 to 20.7; P < 0.001 for fixed PEEP of 12 cm H2O and 17.1%; 95% CI, 10.0 to 20.6; P < 0.001 for fixed PEEP of 4 to 5 cm H2O). Mean intraoperative driving pressure was 9.8 cm H2O (individualized PEEP), 14.4 cm H2O (fixed PEEP of 12 cm H2O), and 18.8 cm H2O (fixed PEEP of 4 to 5 cm H2O), P < 0.001. CONCLUSIONS: This secondary analysis of obese patients undergoing laparoscopic surgery found better oxygenation, lower driving pressures, and redistribution of ventilation toward dependent lung areas measured by electrical impedance tomography using individualized PEEP. The impact on patient outcome remains unclear.


Subject(s)
Pulmonary Atelectasis , Respiration, Artificial , Humans , Obesity , Positive-Pressure Respiration , Tidal Volume
5.
Acta Anaesthesiol Scand ; 65(1): 100-108, 2021 01.
Article in English | MEDLINE | ID: mdl-32931610

ABSTRACT

BACKGROUND: We aimed to investigate the physiological mechanism and spatial distribution of increased physiological dead-space, an early marker of ARDS mortality, in the initial stages of ARDS. We hypothesized that: increased dead-space results from the spatial redistribution of pulmonary perfusion, not ventilation; such redistribution is not related to thromboembolism (ie, areas with perfusion = 0 and infinite ventilation-perfusion ratio, V ˙ / Q ˙ ), but rather to moderate shifts of perfusion increasing V ˙ / Q ˙ in non-dependent regions. METHODS: Five healthy anesthetized sheep received protective ventilation for 20 hours, while endotoxin was continuously infused. Maps of voxel-level lung ventilation, perfusion, V ˙ / Q ˙ , CO2 partial pressures, and alveolar dead-space fraction were estimated from positron emission tomography at baseline and 20 hours. RESULTS: Alveolar dead-space fraction increased during the 20 hours (+0.05, P = .031), mainly in non-dependent regions (+0.03, P = .031). This was mediated by perfusion redistribution away from non-dependent regions (-5.9%, P = .031), while the spatial distribution of ventilation did not change, resulting in increased V ˙ / Q ˙ in non-dependent regions. The increased alveolar dead-space derived mostly from areas with intermediate V ˙ / Q ˙ (0.5≤ V ˙ / Q ˙ ≤10), not areas of nearly "complete" dead-space ( V ˙ / Q ˙ >10). CONCLUSIONS: In this early ARDS model, increases in alveolar dead-space occur within 20 hours due to the regional redistribution of perfusion and not ventilation. This moderate redistribution suggests changes in the interplay between active and passive perfusion redistribution mechanisms (including hypoxic vasoconstriction and gravitational effects), not the appearance of thromboembolism. Hence, the association between mortality and increased dead-space possibly arises from the former, reflecting gas-exchange inefficiency due to perfusion heterogeneity. Such heterogeneity results from the injury and exhaustion of compensatory mechanisms for perfusion redistribution.


Subject(s)
Respiratory Distress Syndrome , Animals , Lung/diagnostic imaging , Partial Pressure , Pulmonary Gas Exchange , Respiration, Artificial , Respiratory Distress Syndrome/diagnostic imaging , Sheep , Ventilation-Perfusion Ratio
6.
Br J Anaesth ; 125(3): 373-382, 2020 09.
Article in English | MEDLINE | ID: mdl-32665059

ABSTRACT

BACKGROUND: Robot-assisted laparoscopic radical prostatectomy requires general anaesthesia, extreme Trendelenburg positioning and capnoperitoneum. Together these promote impaired pulmonary gas exchange caused by atelectasis and may contribute to postoperative pulmonary complications. In morbidly obese patients, a recruitment manoeuvre (RM) followed by individualised PEEP improves intraoperative oxygenation and end-expiratory lung volume (EELV). We hypothesised that individualised PEEP with initial RM similarly improves intraoperative oxygenation and EELV in non-obese individuals undergoing robot-assisted prostatectomy. METHODS: Forty males (age, 49-76 yr; BMI <30 kg m-2) undergoing prostatectomy received volume-controlled ventilation (tidal volume 8 ml kg-1 predicted body weight). Participants were randomised to either (1) RM followed by individualised PEEP (RM/PEEPIND) optimised using electrical impedance tomography or (2) no RM with 5 cm H2O PEEP. The primary outcome was the ratio of arterial oxygen partial pressure to fractional inspired oxygen (Pao2/Fio2) before the last RM before extubation. Secondary outcomes included regional ventilation distribution and EELV which were measured before, during, and after anaesthesia. The cardiovascular effects of RM/PEEPIND were also assessed. RESULTS: In 20 males randomised to RM/PEEPIND, the median PEEPIND was 14 cm H2O [inter-quartile range, 8-20]. The Pao2/Fio2 was 10.0 kPa higher with RM/PEEPIND before extubation (95% confidence interval [CI], 2.6-17.3 kPa; P=0.001). RM/PEEPIND increased end-expiratory lung volume by 1.49 L (95% CI, 1.09-1.89 L; P<0.001). RM/PEEPIND also improved the regional ventilation of dependent lung regions. Vasopressor and fluid therapy was similar between groups, although 13 patients randomised to RM/PEEPIND required pharmacological therapy for bradycardia. CONCLUSION: In non-obese males, an individualised ventilation strategy improved intraoperative oxygenation, which was associated with higher end-expiratory lung volumes during robot-assisted laparoscopic prostatectomy. CLINICAL TRIAL REGISTRATION: DRKS00004199 (German clinical trials registry).


Subject(s)
Electric Impedance , Positive-Pressure Respiration/methods , Prostatectomy/methods , Robotic Surgical Procedures/methods , Aged , Humans , Male , Middle Aged , Prospective Studies
7.
J Clin Med ; 8(8)2019 Aug 18.
Article in English | MEDLINE | ID: mdl-31426607

ABSTRACT

Reducing ventilator-associated lung injury by individualized mechanical ventilation (MV) in patients with Acute Respiratory Distress Syndrome (ARDS) remains a matter of research. We randomly assigned 27 pigs with acid aspiration-induced ARDS to three different MV protocols for 24 h, targeting different magnitudes of collapse and tidal recruitment (collapse&TR): the ARDS-network (ARDSnet) group with low positive end-expiratory pressure (PEEP) protocol (permissive collapse&TR); the Open Lung Concept (OLC) group, PaO2/FiO2 >400 mmHg, indicating collapse&TR <10%; and the minimized collapse&TR monitored by Electrical Impedance Tomography (EIT) group, standard deviation of regional ventilation delay, SDRVD. We analyzed cardiorespiratory parameters, computed tomography (CT), EIT, and post-mortem histology. Mean PEEP over post-randomization measurements was significantly lower in the ARDSnet group at 6.8 ± 1.0 cmH2O compared to the EIT (21.1 ± 2.6 cmH2O) and OLC (18.7 ± 3.2 cmH2O) groups (general linear model (GLM) p < 0.001). Collapse&TR and SDRVD, averaged over all post-randomization measurements, were significantly lower in the EIT and OLC groups than in the ARDSnet group (collapse p < 0.001, TR p = 0.006, SDRVD p < 0.004). Global histological diffuse alveolar damage (DAD) scores in the ARDSnet group (10.1 ± 4.3) exceeded those in the EIT (8.4 ± 3.7) and OLC groups (6.3 ± 3.3) (p = 0.16). Sub-scores for edema and inflammation differed significantly (ANOVA p < 0.05). In a clinically realistic model of early ARDS with recruitable and nonrecruitable collapse, mechanical ventilation involving recruitment and high-PEEP reduced collapse&TR and resulted in improved hemodynamic and physiological conditions with a tendency to reduced histologic lung damage.

8.
Chaos ; 28(8): 085707, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30180626

ABSTRACT

Inappropriate patient-ventilator interactions' (PVI) quality is associated with adverse clinical consequences, such as patient anxiety/fear and increased need of sedative and paralytic agents. Thus, technological devices/tools to support the recognition and monitoring of different PVI quality are of great interest. In the present study, we investigate two tools based on a recent landmark study which applied recurrence plots (RPs) and recurrence quantification analysis (RQA) techniques in non-invasive mechanical ventilation. Our interest is in how this approach could be a daily part of critical care professionals' routine (which are not familiar with dynamical systems theory methods and concepts). Two representative time series of three typical PVI "scenarios" were selected from 6 critically ill patients subjected to invasive mechanical ventilation. First, both the (i) main signatures in RPs and the (ii) respective signals that provide the most (visually) discriminant RPs were identified. This allows one to propose a visual identification protocol for PVIs' quality through the RPs' overall aspect. Support for the effectiveness of this visual based assessment tool is given by a RQA-based assessment tool. A statistical analysis shows that both the recurrence rate and the Shannon entropy are able to identify the selected PVI scenarios. It is then expected that the development of an objective method can reliably identify PVI quality, where the results corroborate the potential of RPs/RQA in the field of respiratory pattern analysis.


Subject(s)
Models, Biological , Respiration, Artificial , Adult , Aged , Critical Illness , Female , Humans , Male , Middle Aged
9.
Front Physiol ; 9: 905, 2018.
Article in English | MEDLINE | ID: mdl-30050467

ABSTRACT

In experimental acute respiratory distress syndrome (ARDS), random variation of tidal volumes (VT ) during volume controlled ventilation improves gas exchange and respiratory system mechanics (so-called stochastic resonance hypothesis). It is unknown whether those positive effects may be further enhanced by periodic VT fluctuation at distinct frequencies, also known as deterministic frequency resonance. We hypothesized that the positive effects of variable ventilation on lung function may be further amplified by periodic VT fluctuation at specific frequencies. In anesthetized and mechanically ventilated pigs, severe ARDS was induced by saline lung lavage and injurious VT (double-hit model). Animals were then randomly assigned to 6 h of protective ventilation with one of four VT patterns: (1) random variation of VT (WN); (2) P04, main VT frequency of 0.13 Hz; (3) P10, main VT frequency of 0.05 Hz; (4) VCV, conventional non-variable volume controlled ventilation. In groups with variable VT , the coefficient of variation was identical (30%). We assessed lung mechanics and gas exchange, and determined lung histology and inflammation. Compared to VCV, WN, P04, and P10 resulted in lower respiratory system elastance (63 ± 13 cm H2O/L vs. 50 ± 14 cm H2O/L, 48.4 ± 21 cm H2O/L, and 45.1 ± 5.9 cm H2O/L respectively, P < 0.05 all), but only P10 improved PaO2/FIO2 after 6 h of ventilation (318 ± 96 vs. 445 ± 110 mm Hg, P < 0.05). Cycle-by-cycle analysis of lung mechanics suggested intertidal recruitment/de-recruitment in P10. Lung histologic damage and inflammation did not differ among groups. In this experimental model of severe ARDS, periodic VT fluctuation at a frequency of 0.05 Hz improved oxygenation during variable ventilation, suggesting that deterministic resonance adds further benefit to variable ventilation.

10.
PLoS One ; 12(10): e0183230, 2017.
Article in English | MEDLINE | ID: mdl-28968394

ABSTRACT

The growing interest in personalized medicine requires making inferences from descriptive indexes estimated from individual recordings of physiological signals, with statistical analyses focused on individual differences between/within subjects, rather than comparing supposedly homogeneous cohorts. To this end, methods to compute confidence limits of individual estimates of descriptive indexes are needed. This study introduces numerical methods to compute such confidence limits and perform statistical comparisons between indexes derived from autoregressive (AR) modeling of individual time series. Analytical approaches are generally not viable, because the indexes are usually nonlinear functions of the AR parameters. We exploit Monte Carlo (MC) and Bootstrap (BS) methods to reproduce the sampling distribution of the AR parameters and indexes computed from them. Here, these methods are implemented for spectral and information-theoretic indexes of heart-rate variability (HRV) estimated from AR models of heart-period time series. First, the MS and BC methods are tested in a wide range of synthetic HRV time series, showing good agreement with a gold-standard approach (i.e. multiple realizations of the "true" process driving the simulation). Then, real HRV time series measured from volunteers performing cognitive tasks are considered, documenting (i) the strong variability of confidence limits' width across recordings, (ii) the diversity of individual responses to the same task, and (iii) frequent disagreement between the cohort-average response and that of many individuals. We conclude that MC and BS methods are robust in estimating confidence limits of these AR-based indexes and thus recommended for short-term HRV analysis. Moreover, the strong inter-individual differences in the response to tasks shown by AR-based indexes evidence the need of individual-by-individual assessments of HRV features. Given their generality, MC and BS methods are promising for applications in biomedical signal processing and beyond, providing a powerful new tool for assessing the confidence limits of indexes estimated from individual recordings.


Subject(s)
Heart Rate , Confidence Intervals , Humans , Monte Carlo Method , Regression Analysis
11.
Crit Care Med ; 45(4): 679-686, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28079607

ABSTRACT

OBJECTIVES: Lung-protective mechanical ventilation aims to prevent alveolar collapse and overdistension, but reliable bedside methods to quantify them are lacking. We propose a quantitative descriptor of the shape of local pressure-volume curves derived from electrical impedance tomography, for computing maps that highlight the presence and location of regions of presumed tidal recruitment (i.e., elastance decrease during inflation, pressure-volume curve with upward curvature) or overdistension (i.e., elastance increase during inflation, downward curvature). DESIGN: Secondary analysis of experimental cohort study. SETTING: University research facility. SUBJECTS: Twelve mechanically ventilated pigs. INTERVENTIONS: After induction of acute respiratory distress syndrome by hydrochloric acid instillation, animals underwent a decremental positive end-expiratory pressure titration (steps of 2 cm H2O starting from ≥ 26 cm H2O). MEASUREMENTS AND MAIN RESULTS: Electrical impedance tomography-derived maps were computed at each positive end-expiratory pressure-titration step, and whole-lung CT taken every second steps. Airway flow and pressure were recorded to compute driving pressure and elastance. Significant correlations between electrical impedance tomography-derived maps and positive end-expiratory pressure indicate that, expectedly, tidal recruitment increases in dependent regions with decreasing positive end-expiratory pressure (p < 0.001) and suggest that overdistension increases both at high and low positive end-expiratory pressures in nondependent regions (p < 0.027), supporting the idea of two different scenarios of overdistension occurrence. Significant correlations with CT measurements were observed: electrical impedance tomography-derived tidal recruitment with poorly aerated regions (r = 0.43; p < 0.001); electrical impedance tomography-derived overdistension with nonaerated regions at lower positive end-expiratory pressures and with hyperaerated regions at higher positive end-expiratory pressures (r ≥ 0.72; p < 0.003). Even for positive end-expiratory pressure levels minimizing global elastance and driving pressure, electrical impedance tomography-derived maps showed nonnegligible regions of presumed overdistension and tidal recruitment. CONCLUSIONS: Electrical impedance tomography-derived maps of pressure-volume curve shapes allow to detect regions in which elastance changes during inflation. This could promote individualized mechanical ventilation by minimizing the probability of local tidal recruitment and/or overdistension. Electrical impedance tomography-derived maps might become clinically feasible and relevant, being simpler than currently available alternative approaches.


Subject(s)
Electric Impedance , Lung/diagnostic imaging , Respiratory Distress Syndrome/diagnostic imaging , Tomography , Animals , Disease Models, Animal , Elasticity , Lung/physiopathology , Positive-Pressure Respiration , Pressure , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Swine
12.
BMC Anesthesiol ; 16: 3, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26757894

ABSTRACT

BACKGROUND: Uncertainty persists regarding the optimal ventilatory strategy in trauma patients developing acute respiratory distress syndrome (ARDS). This work aims to assess the effects of two mechanical ventilation strategies with high positive end-expiratory pressure (PEEP) in experimental ARDS following blunt chest trauma. METHODS: Twenty-six juvenile pigs were anesthetized, tracheotomized and mechanically ventilated. A contusion was applied to the right chest using a bolt-shot device. Ninety minutes after contusion, animals were randomized to two different ventilation modes, applied for 24 h: Twelve pigs received conventional pressure-controlled ventilation with moderately low tidal volumes (VT, 8 ml/kg) and empirically chosen high external PEEP (16 cmH2O) and are referred to as the HP-CMV-group. The other group (n = 14) underwent high-frequency inverse-ratio pressure-controlled ventilation (HFPPV) involving respiratory rate of 65 breaths · min(-1), inspiratory-to-expiratory-ratio 2:1, development of intrinsic PEEP and recruitment maneuvers, compatible with the rationale of the Open Lung Concept. Hemodynamics, gas exchange and respiratory mechanics were monitored during 24 h. Computed tomography and histology were analyzed in subgroups. RESULTS: Comparing changes which occurred from randomization (90 min after chest trauma) over the 24-h treatment period, groups differed statistically significantly (all P values for group effect <0.001, General Linear Model analysis) for the following parameters (values are mean ± SD for randomization vs. 24-h): PaO2 (100% O2) (HFPPV 186 ± 82 vs. 450 ± 59 mmHg; HP-CMV 249 ± 73 vs. 243 ± 81 mmHg), venous admixture (HFPPV 34 ± 9.8 vs. 11.2 ± 3.7%; HP-CMV 33.9 ± 10.5 vs. 21.8 ± 7.2%), PaCO2 (HFPPV 46.9 ± 6.8 vs. 33.1 ± 2.4 mmHg; HP-CMV 46.3 ± 11.9 vs. 59.7 ± 18.3 mmHg) and normally aerated lung mass (HFPPV 42.8 ± 11.8 vs. 74.6 ± 10.0 %; HP-CMV 40.7 ± 8.6 vs. 53.4 ± 11.6%). Improvements occurring after recruitment in the HFPPV-group persisted throughout the study. Peak airway pressure and VT did not differ significantly. HFPPV animals had lower atelectasis and inflammation scores in gravity-dependent lung areas. CONCLUSIONS: In this model of ARDS following unilateral blunt chest trauma, HFPPV ventilation improved respiratory function and fulfilled relevant ventilation endpoints for trauma patients, i.e. restoration of oxygenation and lung aeration while avoiding hypercapnia and respiratory acidosis.


Subject(s)
Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Respiratory Mechanics/physiology , Thoracic Injuries/therapy , Wounds, Nonpenetrating/therapy , Animals , Positive-Pressure Respiration/methods , Random Allocation , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/physiopathology , Swine , Thoracic Injuries/complications , Thoracic Injuries/physiopathology , Wounds, Nonpenetrating/complications , Wounds, Nonpenetrating/physiopathology
13.
Arch. med. deporte ; 32(170): 374-381, nov.-dic. 2015. ilus, tab, graf
Article in English | IBECS | ID: ibc-148413

ABSTRACT

Indoor cycling (IC) has recently been increasing in popularity and gaining recognition as an effective training activity. However, few studies have investigated the benefits of IC for sedentary participants, and the electrical activity of muscles during IC classes, in fitness clubs, has not been reported. The aim of this study was to compare muscle activity, heart rate (HR), and subjective effort between two groups (sedentary participants and trained teachers of the fitness club), over three IC classes. Thirty-eight volunteers were split into two groups according to their fitness status and weekly training load. Each participant completed three IC classes in a private gym over separate days. Variables were compared both between groups and within classes. Exercise intensity, assessed using the HR, was similar in both groups. The subjective perceived effort, assessed using the Borg Scale, was significantly higher in the sedentary group. However, the surface electromyographic (sEMG) data showed adaptive responses in this group after three classes. There was a trend for a gradual reduction in fatigue in sedentary participants, especially for the gluteus maximus and biceps femoris muscles, raising doubts regarding the inclusion of individuals with different training levels in the same class. The root mean square and median frequency of the sEMG data changed over the three IC classes, indicating adaptation to fatigue in the sedentary group, but not in trained participants. Thus, IC can be incorporated into protocols for sedentary individuals, but the short-term adaptation suggests that developing a specific class/ protocol for beginners might be appropriate. They could then be included in an advanced class after the third day of training (AU)


Ciclismo indoor (CI) está ganando reconocimiento y popularidad en los últimos años y pocos estudios han investigado los beneficios para los participantes sedentarios. No se han publicado estudios sobre la actividad eléctrica de los músculos que participan en las clases reales de CI. El objetivo de este estudio fue comparar el tiempo y el efecto del grupo en las variables de la actividad eléctrica muscular, frecuencia cardíaca (FC) y el esfuerzo subjetivo en ambos grupos (profesores sedentarios y entrenados en un gimnasio). Treinta y ocho voluntarios fueron divididos en dos grupos de acuerdo a su estado de entrenamiento semanal. Cada sujeto completó en días separados, tres clases CI en un gimnasio privado. Las variables se compararon entre los grupos y entre las clases. La intensidad del ejercicio que llegaron los sujetos, en términos de FC, fue similar en ambos grupos, aunque el esfuerzo subjetivo, medido por la escala de Borg, mostró diferencias signicativas en la percepción del esfuerzo entre los grupos, siendo mayor en el grupo sedentario. Sin embargo, los datos muestran respuestas sEMG adaptativas en este grupo después de tres clases. Hubo una tendencia de reducción gradual de la fatiga en sedentarios, especialmente para GM y BF, y hace cuestionable la inclusión de las personas con diferente nivel de entrenamiento en el mismo salón de clases. Los resultados mostraron que tres clases de CI llevaron a cambios de comportamiento en el RMS y en la FM, lo que indica la adaptación a la fatiga en el grupo sedentario, pero no en los entrenados. Por lo tanto, IC puede ser incorporado en los protocolos para sedentarios, pero esta adaptación a corto plazo a la fatiga sugiere la posibilidad de posibilidad de nuevos estudios, con clase / protocolo especí_co para los principiantes. Ellos podrían ser incluidos en la clase avanzada a partir del tercer día de entrenamiento (AU)


Subject(s)
Humans , Male , Female , Bicycling/physiology , Bicycling/statistics & numerical data , Bicycling/trends , Sedentary Behavior , Muscle Fatigue/physiology , Psychomotor Performance/physiology , Athletic Performance/standards , Heart Rate/physiology , Exercise Test/methods , Exercise Test , Physical Exertion/physiology , Electromyography/methods , Electromyography/trends
14.
PLoS One ; 9(9): e103057, 2014.
Article in English | MEDLINE | ID: mdl-25247308

ABSTRACT

BACKGROUND: Measuring esophageal pressure (Pes) using an air-filled balloon catheter (BC) is the common approach to estimate pleural pressure and related parameters. However, Pes is not routinely measured in mechanically ventilated patients, partly due to technical and practical limitations and difficulties. This study aimed at comparing the conventional BC with two alternative methods for Pes measurement, liquid-filled and air-filled catheters without balloon (LFC and AFC), during mechanical ventilation with and without spontaneous breathing activity. Seven female juvenile pigs (32-42 kg) were anesthetized, orotracheally intubated, and a bundle of an AFC, LFC, and BC was inserted in the esophagus. Controlled and assisted mechanical ventilation were applied with positive end-expiratory pressures of 5 and 15 cmH2O, and driving pressures of 10 and 20 cmH2O, in supine and lateral decubitus. MAIN RESULTS: Cardiogenic noise in BC tracings was much larger (up to 25% of total power of Pes signal) than in AFC and LFC (<3%). Lung and chest wall elastance, pressure-time product, inspiratory work of breathing, inspiratory change and end-expiratory value of transpulmonary pressure were estimated. The three catheters allowed detecting similar changes in these parameters between different ventilation settings. However, a non-negligible and significant bias between estimates from BC and those from AFC and LFC was observed in several instances. CONCLUSIONS: In anesthetized and mechanically ventilated pigs, the three catheters are equivalent when the aim is to detect changes in Pes and related parameters between different conditions, but possibly not when the absolute value of the estimated parameters is of paramount importance. Due to a better signal-to-noise ratio, and considering its practical advantages in terms of easier calibration and simpler acquisition setup, LFC may prove interesting for clinical use.


Subject(s)
Catheterization/instrumentation , Esophagus/physiology , Pleura/physiology , Swine/physiology , Air , Animals , Catheterization/methods , Female , Humans , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Pressure , Respiration, Artificial , Respiratory Mechanics , Signal-To-Noise Ratio
15.
Crit Care Med ; 42(11): e702-15, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25162475

ABSTRACT

OBJECTIVES: To assess the effects of different levels of spontaneous breathing during biphasic positive airway pressure/airway pressure release ventilation on lung function and injury in an experimental model of moderate acute respiratory distress syndrome. DESIGN: Multiple-arm randomized experimental study. SETTING: University hospital research facility. SUBJECTS: Thirty-six juvenile pigs. INTERVENTIONS: Pigs were anesthetized, intubated, and mechanically ventilated. Moderate acute respiratory distress syndrome was induced by repetitive saline lung lavage. Biphasic positive airway pressure/airway pressure release ventilation was conducted using the airway pressure release ventilation mode with an inspiratory/expiratory ratio of 1:1. Animals were randomly assigned to one of four levels of spontaneous breath in total minute ventilation (n = 9 per group, 6 hr each): 1) biphasic positive airway pressure/airway pressure release ventilation, 0%; 2) biphasic positive airway pressure/airway pressure release ventilation, > 0-30%; 3) biphasic positive airway pressure/airway pressure release ventilation, > 30-60%, and 4) biphasic positive airway pressure/airway pressure release ventilation, > 60%. MEASUREMENTS AND MAIN RESULTS: The inspiratory effort measured by the esophageal pressure time product increased proportionally to the amount of spontaneous breath and was accompanied by improvements in oxygenation and respiratory system elastance. Compared with biphasic positive airway pressure/airway pressure release ventilation of 0%, biphasic positive airway pressure/airway pressure release ventilation more than 60% resulted in lowest venous admixture, as well as peak and mean airway and transpulmonary pressures, redistributed ventilation to dependent lung regions, reduced the cumulative diffuse alveolar damage score across lungs (median [interquartile range], 11 [3-40] vs 18 [2-69]; p < 0.05), and decreased the level of tumor necrosis factor-α in ventral lung tissue (median [interquartile range], 17.7 pg/mg [8.4-19.8] vs 34.5 pg/mg [29.9-42.7]; p < 0.05). Biphasic positive airway pressure/airway pressure release ventilation more than 0-30% and more than 30-60% showed a less consistent pattern of improvement in lung function, inflammation, and damage compared with biphasic positive airway pressure/airway pressure release ventilation more than 60%. CONCLUSIONS: In this model of moderate acute respiratory distress syndrome in pigs, biphasic positive airway pressure/airway pressure release ventilation with levels of spontaneous breath higher than usually seen in clinical practice, that is, more than 30% of total minute ventilation, reduced lung injury with improved respiratory function, as compared with protective controlled mechanical ventilation.


Subject(s)
Oxygen Consumption/physiology , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Ventilator-Induced Lung Injury/prevention & control , Animals , Continuous Positive Airway Pressure/methods , Disease Models, Animal , Hemodynamics/physiology , Pulmonary Gas Exchange/physiology , Random Allocation , Reference Values , Respiration , Respiratory Function Tests , Respiratory Mechanics , Severity of Illness Index , Swine , Treatment Outcome
16.
Respir Care ; 59(12): 1888-94, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25118312

ABSTRACT

BACKGROUND: Evidence exists that during pressure support ventilation (PSV), the addition of an extrinsic (ie, ventilator-generated) breath-to-breath variability (BBV) of breathing pattern improves respiratory function. If BBV is beneficial per se, choosing the PS level that maximizes it could be considered a valid strategy for conventional PSV. In this study, we evaluated the effect of different PS levels on intrinsic BBV in acutely ill, mechanically ventilated subjects to determine whether a significant relationship exists between PS level and BBV magnitude. METHODS: Fourteen invasively mechanically ventilated subjects were prospectively studied. PS was adjusted at 20 cm H2O and sequentially reduced to 15, 10, and 5 cm H2O. Arterial blood gas analysis and pressure at 0.1 s after the onset of inspiration (P0.1) were measured at each PS level. Airway and esophageal pressure and air flow were continuously recorded. Peak inspiratory flow, tidal volume (VT), breathing frequency, and pressure-time product (PTP) were calculated on a breath-by-breath basis. The breathing pattern variability was assessed by the coefficient of variation of the time series of VT, peak inspiratory flow, and breathing frequency from ∼ 60 consecutive breath cycles at each PS level. A general linear model for repeated measures was applied, with PS as an independent factor. A significance level of .05 was considered. RESULTS: Despite a large inter-individual difference in all measured variables (P < .001), the coefficient of variation was as low as 30%, and no significant differences in the coefficient of variation of peak inspiratory flow, breathing frequency, and VT between PS levels were observed (P > .15). Additionally, a significant increase in P0.1, PTP, and breathing frequency (P < .01) and a reduction in VT (P < .001) were observed with PS reduction. CONCLUSIONS: Despite a significant increase in spontaneous activity with PS reduction, BBV was not influenced by the PS level and was as low as 30% for all evaluated parameters.


Subject(s)
Pressure , Respiration, Artificial/methods , Respiration , Respiratory Insufficiency/therapy , Adult , Aged , Blood Gas Analysis , Esophagus , Humans , Middle Aged , Prospective Studies , Pulmonary Ventilation , Respiratory Insufficiency/physiopathology , Respiratory Rate , Tidal Volume , Time Factors
17.
Anesthesiology ; 120(3): 673-82, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24406799

ABSTRACT

BACKGROUND: Spontaneous breathing (SB) in the early phase of the acute respiratory distress syndrome is controversial. Biphasic positive airway pressure/airway pressure release ventilation (BIPAP/APRV) is commonly used, but the level of SB necessary to maximize potential beneficial effects is unknown. METHODS: Experimental acute respiratory distress syndrome was induced by saline lung lavage in anesthetized and mechanically ventilated pigs (n = 12). By using a Latin square and crossover design, animals were ventilated with BIPAP/APRV at four different levels of SB in total minute ventilation (60 min each): (1) 0% (BIPAP/APRV0%); (2) greater than 0 to 30% (BIPAP/APRV>0-30%); (3) greater than 30 to 60% (BIPAP/APRV>30-60%); and (4) greater than 60% (BIPAP/APRV>60%). Gas exchange, hemodynamics, and respiratory variables were measured. Lung aeration was assessed by high-resolution computed tomography. The distribution of perfusion was marked with Ga-labeled microspheres and evaluated by positron emission tomography. RESULTS: The authors found that higher levels of SB during BIPAP/APRV (1) improved oxygenation; (2) decreased mean transpulmonary pressure (stress) despite increased inspiratory effort; (3) reduced nonaerated lung tissue, with minimal changes in the distribution of perfusion, resulting in decreased low aeration/perfusion zones; and (4) decreased global strain (mean ± SD) (BIPAP/APRV0%: 1.39 ± 0.08; BIPAP/APRV0-30%: 1.33 ± 0.03; BIPAP/APRV30-60%: 1.27 ± 0.06; BIPAP/APRV>60%: 1.25 ± 0.04, P < 0.05 all vs. BIPAP/APRV0%, and BIPAP/APRV>60% vs. BIPAP/APRV0-30%). CONCLUSIONS: In a saline lung lavage model of experimental acute respiratory distress syndrome in pigs, levels of SB during BIPAP/APRV higher than currently recommended for clinical practice, that is, 10 to 30%, improve oxygenation by increasing aeration in dependent lung zones without relevant redistribution of perfusion. In presence of lung recruitment, higher levels of SB reduce global stress and strain despite an increase in inspiratory effort.


Subject(s)
Lung Injury/physiopathology , Respiration , Respiratory Distress Syndrome/physiopathology , Respiratory Mechanics/physiology , Animals , Cross-Over Studies , Disease Models, Animal , Lung/diagnostic imaging , Lung/physiopathology , Positron-Emission Tomography/methods , Swine , Tomography, X-Ray Computed/methods
18.
Psychophysiology ; 51(2): 197-205, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24423137

ABSTRACT

Changes in heart rate variability (HRV) at "respiratory" frequencies (0.15-0.5 Hz) may result from changes in respiration rather than autonomic control. We now investigate if the differences in HRV power in the low-frequency (LF) band (0.05-0.15 Hz, HRV(LF)) can also be predicted by respiration variability, quantified by the fraction of tidal volume power in the LF (V(LF,n)). Three experimental protocols were considered: paced breathing, mental effort tasks, and a repeated attentional task. Significant intra- and interindividual correlations were found between changes in HRV(LF) and V(LF,n) despite all subjects having a respiratory frequency above the LF band. Respiratory parameters (respiratory period, tidal volume, and V(LF,n)) could predict up to 79% of HRV(LF) differences in some cases. This suggests that respiratory variability is another mechanism of HRV(LF) generation, which should be always monitored, assessed, and considered in the interpretation of HRV changes.


Subject(s)
Heart Rate/physiology , Respiratory Mechanics/physiology , Adolescent , Adult , Computer Simulation , Electrocardiography , Female , Humans , Male , Young Adult
19.
Crit Care ; 17(5): R261, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24172538

ABSTRACT

INTRODUCTION: This study aims at comparing the very short-term effects of conventional and noisy (variable) pressure support ventilation (PSV) in mechanically ventilated patients with acute hypoxemic respiratory failure. METHODS: Thirteen mechanically ventilated patients with acute hypoxemic respiratory failure were enrolled in this monocentric, randomized crossover study. Patients were mechanically ventilated with conventional and noisy PSV, for one hour each, in random sequence. Pressure support was titrated to reach tidal volumes approximately 8 mL/kg in both modes. The level of positive end-expiratory pressure and fraction of inspired oxygen were kept unchanged in both modes. The coefficient of variation of pressure support during noisy PSV was set at 30%. Gas exchange, hemodynamics, lung functional parameters, distribution of ventilation by electrical impedance tomography, breathing patterns and patient-ventilator synchrony were analyzed. RESULTS: Noisy PSV was not associated with any adverse event, and was well tolerated by all patients. Gas exchange, hemodynamics, respiratory mechanics and spatial distribution of ventilation did not differ significantly between conventional and noisy PSV. Noisy PSV increased the variability of tidal volume (24.4 ± 7.8% vs. 13.7 ± 9.1%, P <0.05) and was associated with a reduced number of asynchrony events compared to conventional PSV (5 (0 to 15)/30 min vs. 10 (1 to 37)/30 min, P <0.05). CONCLUSIONS: In the very short term, noisy PSV proved safe and feasible in patients with acute hypoxemic respiratory failure. Compared to conventional PSV, noisy PSV increased the variability of tidal volumes, and was associated with improved patient-ventilator synchrony, at comparable levels of gas exchange. TRIAL REGISTRATION: ClinicialTrials.gov, NCT00786292.


Subject(s)
Respiration, Artificial/methods , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/therapy , Acute Disease , Adolescent , Adult , Aged , Cross-Over Studies , Female , Germany , Hemodynamics , Humans , Hypoxia/physiopathology , Hypoxia/therapy , Male , Middle Aged , Monitoring, Physiologic , Pulmonary Gas Exchange , Treatment Outcome
20.
Auton Neurosci ; 178(1-2): 89-95, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23642542

ABSTRACT

The interaction of respiration and heart-rate variability (HRV), leading to respiratory sinus arrhythmia (RSA) and, in the inverse direction, cardioventilatory coupling has been subject of much study and controversy. A parametric linear feedback model can be used to study these interactions. In order to investigate differences between inspiratory and expiratory periods, we propose that models are estimated separately for each period, by finding least mean square estimates only over the desired signal segments. This approach was tested in simulated data and heart-rate and respiratory air flow signals recorded from 25 young healthy adults (13 men and 12 women), at rest, breathing spontaneously through a face mask for 5 min. The results show significant differences (p<0.05) between the estimates of coherence obtained from the whole recording, and the inspiration and expiration periods. Simple and causal coherence from respiration to HRV was higher during inspiration than expiration. The estimates of gain also differed significantly in the high frequency (HF) band (0.15-0.5Hz) between those obtained from the whole recording, and the inspiratory and expiratory periods. These results indicate that a single linear model fitted to the whole recording neglects potentially important differences between inspiration and expiration, and the current paper shows how such differences can be estimated, without the need to control breathing.


Subject(s)
Exhalation/physiology , Heart Rate/physiology , Inhalation/physiology , Models, Cardiovascular , Respiration , Computer Simulation , Electrocardiography , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...