Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Bioorg Khim ; 33(2): 195-228, 2007.
Article in Russian | MEDLINE | ID: mdl-17476982

ABSTRACT

This review is devoted to chemical transformations of nucleic acids and their components under the action of nitrogen oxide metabolites. The deamination reaction of bases is discussed in the context of possible competing transformations of its intermediates (nitrosamines, diazonium cations, diazotates, triazenes, and diazoanhydrides) and mechanisms of crosslink formation with proteins and nucleic acids. The oxidation and nitration of bases by NO2 is considered together with the possibility of radical transfer to domains from the base stacks in DNA. Reduction of redox potentials of bases as a result of stacking interactions explains the possibility of their reactions within nucleic acids with the oxidants whose redox potential is insufficient for the effective reactions with mononucleotides. Modifications of nucleic acids with peroxynitrite derivatives are discussed in the context of the effect of the DNA primary structure and the modification products formed on the reactivity of single bases. The possibility of reduction of nitro groups within modified bases to amino derivatives and their subsequent diazotation is considered. The substitution of oxoguanine for nitroguanine residues may result; the reductive diazotation can lead to undamaged guanine. The intermediate modified bases, e.g., 8-aminoguanine and 8-diazoguanine, were shown to participate in noncanonical base pairing, including the formation of more stable bonds with two bases, which is characteristic of the DNA Z-form. A higher sensitivity of RNA in comparison with DNA to NO-dependent modifications (NODMs) is predicted on the basis of the contribution of medium microheterogeneity and the known mechanisms of nitrosylation and nitration. The possible biological consequences of nucleic acids NODMs are briefly considered. It is shown that the NODMs under the action of nitrogen oxide metabolites generated by macrophages and similar cells in inflammations or infections should lead to a sharp increase in the number of mutations in the case of RNA-containing viruses. As a result, the defense mechanisms of the host organism may contribute to the appearance of new, including more dangerous, variants of infecting viruses.


Subject(s)
DNA/chemistry , Nitric Oxide/chemistry , Nitrogen Dioxide/chemistry , RNA/chemistry , Oxidation-Reduction , Peroxynitrous Acid/chemistry
2.
Bioorg Khim ; 32(1): 3-26, 2006.
Article in Russian | MEDLINE | ID: mdl-16523718

ABSTRACT

Biogenous nitric(II) oxide (NO), the higher nitrogen oxides (NO2, isomeric N2O3 and N2O4, ONOO-, etc.) that are NO-derived in vivo, and the products of their transformations are active compounds capable of reactions with biopolymers and low-molecular metabolites. The products of these reactions are often considered to be various NO-dependent modifications (NODMs). The nitrated, nitrosylated, nitrosated, and other NODMs play key roles in the regulation of the most important biochemical processes. In this review, we briefly discuss the metabolic reactions of nitrogen oxides that supply active intermediates for NODMs, the NODM reaction products, and some mechanisms of NODM reparation that allow the recovery of chemically intact biopolymer molecule from a modified (chemically damaged) NODM. For example, residues of 3-nitrotyrosine arising due to the NODM reactions of proteins can be reduced to unsubstituted Tyr residues as a result of alternative NODM reactions through intermediate diazotyrosine derivatives. The heterogeneity of a medium in vivo is an important factor controlling the proceeding of NODM reactions. We showed that many processes determining NODM efficiency proceed differently in the heterogeneous media of organisms and in homogeneous aqueous solutions.


Subject(s)
Biopolymers/metabolism , Nitric Oxide/metabolism , Protein Processing, Post-Translational , Proteins/metabolism , Tyrosine/analogs & derivatives , Animals , Biopolymers/chemistry , Fungi/metabolism , Humans , Nitric Oxide/chemistry , Proteins/chemistry , Tyrosine/chemistry , Tyrosine/metabolism
3.
Biochemistry (Mosc) ; 68(12): 1369-75, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14756634

ABSTRACT

Perfluoroalkyl halides (PFHs) are synthetic products widely used in various fields. Perfluorooctyl bromide (PFB) is used in medicine as a component of blood substitutes and for artificial lung ventilation. In both cases, it is considered a completely inert compound acting as a solvent for oxygen. However, there are many reports of PFH-induced intoxication, including lethal cases. Mechanisms underlying toxic effects of this compound remain unknown. In this study, we demonstrate that the reduced form of cobalamin (vitamin B12) typical for B12-dependent enzymes can catalyze the reactions of perfluoroalkylation, aromatic substitution, or addition by double bonds. Synthesis of perfluoro derivatives from PFHs during catalysis by cob(I)alamin-like super nucleophiles is a new possible mechanism responsible for in vivo formation of highly toxic compounds from "chemically inert" substances widely used in medicine. Catalytic perfluoroalkylation might possibly contribute to nitric oxide depletion and modulation of activity of guanylate cyclase, cytochromes, NO-synthases, and other heme-containing proteins.


Subject(s)
Hydrocarbons, Halogenated/chemistry , Hydrocarbons, Halogenated/toxicity , Vitamin B 12/chemistry , Alkylation/drug effects , Catalysis/drug effects , Fluorine/chemistry , Molecular Structure , Nitric Oxide/chemistry , Oxidation-Reduction , Vitamin B 12/pharmacology
4.
Mol Gen Mikrobiol Virusol ; (4): 31-41, 2001.
Article in Russian | MEDLINE | ID: mdl-11816118

ABSTRACT

Micellar catalysis under aerobic conditions effectively accelerates oxidative nitrosylation because of solubilization of NO and O2 by protein membranes and hydrophobic nuclei. Nitrosylating intermediates NOx (NO2, N2O3, N2O4) form mainly in the hydrophobic phase, and therefore their solubility in aqueous phase is low and hydrolysis is rapid, local concentration of NOx in the hydrophobic phase being essentially higher than in aqueous. Tryptophan is a hydrophobic residue and can nitrosylate with the formation of isomer N-nitrosotryptophans (NOW). Without denitrosylation mechanism, the accumulation of NOW in proteins of NO-synthesizing organisms would be constant, and long-living proteins would contain essential amounts of NOW, which is however not the case. Using Protein Data Bank (more than 78,000 sequences) we investigated the distribution of tryptophan residues environment (22 residues on each side of polypeptide chain) in proteins with known primary structure. Charged and polar residues (D, H, K, N, Q, R, S) are more incident in the immediate surrounding of tryptophan (-6, -5, -2, -1, 1, 2, 4) and hydrophobic residues (A, F, I, L, V, Y) are more rare than in remote positions. Hence, an essential part of tryptophan residues is situated in hydrophilic environment, which decreases the nitrosylation velocity because of lower NOx concentration in aqueous phase and allows the denitrosylation reactions course via nitrosonium ion transfer on nucleophils of functional groups of protein and low-molecular compounds in aqueous phase.


Subject(s)
Nitroso Compounds/metabolism , Proteins/metabolism , Tryptophan/metabolism , Amino Acid Sequence , Catalysis , Micelles , Oxidation-Reduction , Proteins/chemistry
5.
FEBS Lett ; 453(1-2): 229-35, 1999 Jun 18.
Article in English | MEDLINE | ID: mdl-10403409

ABSTRACT

The equation of the dependence of the third-order reaction acceleration due to concentrating the reagents in a small volume of the hydrophobic phase on the partition coefficients of reagents (Q) and on the lipophilic phase fraction (x), [k(app)/ k2 = H(Q(NO),Q(O2),x)] was analyzed. It was demonstrated that the numeric value of dH/dx at x-->0 could not be used in order to calculate the efficiency of catalysis from the experimental data. It was shown that, unlike in two-phase systems (with an aqueous and a hydrophobic phase), the dependence of H on Q in multi-phase systems, that include all in vivo systems, is different. The multiple phase state of the systems has a determining role for a regulation of NO-dependent processes and in the realization of conditions of 'NO catastrophes'.


Subject(s)
Nitric Oxide/chemistry , Nitric Oxide/metabolism , Catalysis , Lipids , Micelles , Models, Chemical , Oxidation-Reduction , Solubility , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...