Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
J Psychiatry Neurosci ; 49(3): E157-E171, 2024.
Article in English | MEDLINE | ID: mdl-38692693

ABSTRACT

BACKGROUND: Critical adolescent neural refinement is controlled by the DCC (deleted in colorectal cancer) protein, a receptor for the netrin-1 guidance cue. We sought to describe the effects of reduced DCC on neuroanatomy in the adolescent and adult mouse brain. METHODS: We examined neuronal connectivity, structural covariance, and molecular processes in a DCC-haploinsufficient mouse model, compared with wild-type mice, using new, custom analytical tools designed to leverage publicly available databases from the Allen Institute. RESULTS: We included 11 DCC-haploinsufficient mice and 16 wild-type littermates. Neuroanatomical effects of DCC haploinsufficiency were more severe in adolescence than adulthood and were largely restricted to the mesocorticolimbic dopamine system. The latter finding was consistent whether we identified the regions of the mesocorticolimbic dopamine system a priori or used connectivity data from the Allen Brain Atlas to determine de novo where these dopamine axons terminated. Covariance analyses found that DCC haploinsufficiency disrupted the coordinated development of the brain regions that make up the mesocorticolimbic dopamine system. Gene expression maps pointed to molecular processes involving the expression of DCC, UNC5C (encoding DCC's co-receptor), and NTN1 (encoding its ligand, netrin-1) as underlying our structural findings. LIMITATIONS: Our study involved a single sex (males) at only 2 ages. CONCLUSION: The neuroanatomical phenotype of DCC haploinsufficiency described in mice parallels that observed in DCC-haploinsufficient humans. It is critical to understand the DCC-haploinsufficient mouse as a clinically relevant model system.


Subject(s)
Brain , DCC Receptor , Dopamine , Haploinsufficiency , Animals , DCC Receptor/genetics , Brain/metabolism , Brain/growth & development , Brain/anatomy & histology , Dopamine/metabolism , Mice , Male , Gene Expression , Neural Pathways , Age Factors , Female , Mice, Inbred C57BL , Aging/genetics , Aging/physiology
2.
Neurology ; 102(5): e209137, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38315945

ABSTRACT

BACKGROUND AND OBJECTIVES: Sensitive, reliable, and scalable biomarkers are needed to accelerate the development of therapies for Parkinson disease (PD). In this study, we evaluate the biomarkers of early PD diagnosis, disease progression, and treatment effect collected in the SPARK. METHODS: Cinpanemab is a human-derived monoclonal antibody binding preferentially to aggregated forms of extracellular α-synuclein. SPARK was a randomized, double-blind, placebo-controlled, phase 2 multicenter trial evaluating 3 cinpanemab doses administered intravenously every 4 weeks for 52 weeks with an active treatment dose-blind extension period for up to 112 weeks. SPARK enrolled 357 participants diagnosed with PD within 3 years, aged 40-80 years, ≤2.5 on the modified Hoehn and Yahr scale, and with evidence of striatal dopaminergic deficit. The primary outcome was change from baseline in the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale total score. Secondary and exploratory biomarker outcomes evaluated change from baseline at week 52 relative to placebo. Dopamine transporter SPECT and MRI were used to quantify changes in the nigrostriatal dopamine pathway and regional atrophy. CSF and plasma samples were used to assess change in total α-synuclein levels, α-synuclein seeding, and neurofilament light chain levels. SPARK was conducted from January 2018 to April 2021 and terminated due to lack of efficacy. RESULTS: Approximately 3.8% (15/398) of SPECT-imaged participants did not have evidence of dopaminergic deficit and were screen-failed. Binary classification of α-synuclein seeding designated 93% (110/118) of the enrolled CSF subgroup as positive for α-synuclein seeds at baseline. Clinical disease progression was observed, with no statistically significant difference in cinpanemab groups compared with that in placebo. Ninety-nine percent of participants with positive α-synuclein seeding remained positive through week 52. No statistically significant changes from baseline were observed between treatment groups and placebo across biomarker measures. Broadly, there was minimal annual change with high interindividual variability across biomarkers-with striatal binding ratios of the ipsilateral putamen showing the greatest mean change/SD over time. DISCUSSION: Biomarker results indicated enrollment of the intended population with early PD, but there was no significant correlation with disease progression or clear evidence of a cinpanemab treatment effect on biomarker measures. Suitable biomarkers for evaluating disease severity and progression in early PD trials are still needed. TRIAL REGISTRATION INFORMATION: NCT03318523 (clinicaltrials.gov/ct2/show/NCT03318523); Submitted October 24, 2017; First patient enrolled January 2018.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , alpha-Synuclein , Antiparkinson Agents/therapeutic use , Antibodies, Monoclonal/therapeutic use , Dopamine/metabolism , Biomarkers , Disease Progression , Double-Blind Method
3.
bioRxiv ; 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37808643

ABSTRACT

Several PET studies have explored the relationship between ß-amyloid load and tau uptake at the early stages of Alzheimer's disease (AD) progression. Most of these studies have focused on the linear relationship between ß-amyloid and tau at the local level and their synergistic effect on different AD biomarkers. We hypothesize that patterns of spatial association between ß-amyloid and tau might be uncovered using alternative association metrics that account for linear as well as more complex, possible nonlinear dependencies. In the present study, we propose a new Canonical Distance Correlation Analysis (CDCA) to generate distinctive spatial patterns of the cross-correlation structure between tau, as measured by [18F]flortaucipir PET, and ß-amyloid, as measured by [18F]florbetapir PET, from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. We found that the CDCA-based ß-amyloid scores were not only maximally distance-correlated to tau in cognitively normal (CN) controls and mild cognitive impairment (MCI), but also differentiated between low and high levels of ß-amyloid uptake. The most distinctive spatial association pattern was characterized by a spread of ß-amyloid covering large areas of the cortex and localized tau in the entorhinal cortex. More importantly, this spatial dependency varies according to cognition, which cannot be explained by the uptake differences in ß-amyloid or tau between CN and MCI subjects. Hence, the CDCA-based scores might be more accurate than the amyloid or tau SUVR for the enrollment in clinical trials of those individuals on the path of cognitive deterioration.

4.
BMC Neurol ; 21(1): 459, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34814867

ABSTRACT

BACKGROUND: Dopamine transporter single-photon emission computed tomography (DaT-SPECT) can quantify the functional integrity of the dopaminergic nerve terminals and has been suggested as an imaging modality to verify the clinical diagnosis of Parkinson's disease (PD). Depending on the stage of progression, approximately 5-15% of participants clinically diagnosed with idiopathic PD have been observed in previous studies to have normal DaT-SPECT patterns. However, the utility of DaT-SPECT in enhancing early PD participant selection in a global, multicenter clinical trial of a potentially disease-modifying therapy is not well understood. METHODS: The SPARK clinical trial was a phase 2 trial of cinpanemab, a monoclonal antibody against alpha-synuclein, in participants with early PD. DaT-SPECT was performed at screening to select participants with DaT-SPECT patterns consistent with degenerative parkinsonism. Acquisition was harmonised across 82 sites. Images were reconstructed and qualitatively read at a central laboratory by blinded neuroradiologists for inclusion prior to automated quantitative analysis. RESULTS: In total, 482 unique participants were screened between January 2018 and May 2019; 3.8% (15/398) of imaged participants were excluded owing to negative DaT-SPECT findings (i.e., scans without evidence of dopaminergic deficit [SWEDD]). CONCLUSION: A smaller proportion of SPARK participants were excluded owing to SWEDD status upon DaT-SPECT screening than has been reported in prior studies. Further research is needed to understand the reasons for the low SWEDD rate in this study and whether these results are generalisable to future studies. If supported, the radiation risks, imaging costs, and operational burden of DaT-SPECT for enrichment may be mitigated by clinical assessment and other study design aspects. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03318523 . Date submitted: October 19, 2017. First Posted: October 24, 2017.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Parkinson Disease , Biomarkers , Dopamine , Humans , Parkinson Disease/diagnostic imaging , Tomography, Emission-Computed, Single-Photon
5.
Int J Dev Neurosci ; 80(4): 257-266, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32115740

ABSTRACT

BACKGROUND: There is currently no targeted treatment available for neonatal arterial ischemic strokes (NAIS). Epidemiological studies demonstrated that perinatal infection/inflammation, peripartum hypoxia, and occlusion of the internal carotid tree are the main determinants of NAIS. The well-established benefit of therapeutic hypothermia (HT) in neonatal encephalopathy due to diffuse hypoxia-ischemia provides a rationale for the potential use of HT as a neuroprotective strategy in NAIS. METHODS: We used a rat model to reproduce the most prevalent human physiopathological scenario of NAIS. The neuroprotective effect of HT was measured by morphometric magnetic resonance imaging, [18 F] fluorodeoxyglucose (FDG) metabolic activity by positron emission tomography/computed tomography, and behavioral tests. RESULTS: HT (a) prevented the occurrence of 44% of NAIS, (b) reduced the volume of strokes by 37%, (c) enhanced [18 F] FDG metabolic activity within the territory of the occluded carotid artery, and (d) improved motor behavior. Both morphometric and metabolic techniques showed consistently that HT provided a neuroprotective effect located in the motor cortex, hippocampus, and caudate-putamen. CONCLUSION: Through combining anatomical, metabolic imaging, and behavioral studies, our study provides evidence of neuroprotective effects of HT in NAIS. These results are potentially translational to human NAIS.


Subject(s)
Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/therapy , Ischemic Stroke/prevention & control , Neuroprotection , Animals , Animals, Newborn , Caudate Nucleus/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Humans , Hypoxia-Ischemia, Brain/diagnostic imaging , Infant, Newborn , Ischemic Stroke/diagnostic imaging , Magnetic Resonance Imaging , Male , Motor Activity , Motor Cortex/diagnostic imaging , Positron Emission Tomography Computed Tomography , Putamen/diagnostic imaging , Rats , Rats, Inbred Lew
6.
J Alzheimers Dis ; 73(2): 543-557, 2020.
Article in English | MEDLINE | ID: mdl-31796668

ABSTRACT

BACKGROUND: Several positron emission tomography (PET) studies have explored the relationship between amyloid-ß (Aß), glucose metabolism, and the APOEɛ4 genotype. It has been reported that APOEɛ4, and not aggregated Aß, contributes to glucose hypometabolism in pre-clinical stages of Alzheimer's disease (AD) pathology. OBJECTIVE: We hypothesize that typical measurements of Aß taken either from composite regions-of-interest with relatively high burden actually cover significant patterns of the relationship with glucose metabolism. In contrast, spatially weighted measures of Aß are more related to glucose metabolism in cognitively normal (CN) aging and mild cognitive impairment (MCI). METHODS: We have generated a score of amyloid burden based on a joint singular value decomposition (SVD) of the cross-correlation structure between glucose metabolism, as measured by [18F]2-fluoro-2-deoxyglucose (FDG) PET, and Aß, as measured by [18F]florbetapir PET, from the Alzheimer's Disease Neuroimaging Initiative study. This SVD-based score reveals cortical regions where a reduced glucose metabolism is maximally correlated with distributed patterns of Aß. RESULTS: From an older population of CN and MCI subjects, we found that the SVD-based Aß score was significantly correlated with glucose metabolism in several cortical regions. Additionally, the corresponding Aß network has hubs that contribute to distributed glucose hypometabolism, which, in turn, are not necessarily foci of Aß deposition. CONCLUSIONS: Our approach uncovered hidden patterns of the glucose metabolism-Aß relationship. We showed that the SVD-based Aß score produces a stronger relationship with decreasing glucose metabolism than either APOEɛ4 genotype or global measures of Aß burden.


Subject(s)
Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/metabolism , Glucose/metabolism , Aged , Aged, 80 and over , Apolipoprotein E4/genetics , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Cognitive Dysfunction/diagnostic imaging , Female , Fluorodeoxyglucose F18 , Genotype , Humans , Magnetic Resonance Imaging , Male , Positron-Emission Tomography
7.
J Neuropathol Exp Neurol ; 78(12): 1130-1146, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31665376

ABSTRACT

Astrocytes are increasingly recognized as active contributors to the disease process in multiple sclerosis (MS), rather than being merely reactive. We investigated the expression of a selected microRNA (miRNA) panel that could contribute both to the injury and to the recovery phases of the disease. Individual astrocytes were laser microdissected from brain sections. We then compared the miRNAs' expressions in MS and control brain samples at different lesional stages in white versus grey matter regions. In active MS lesions, we found upregulation of ischemia-related miRNAs in white but not grey matter, often with reversion to the normal state in inactive lesions. In contrast to our previous findings on MS macrophages, expression of 2 classical inflammatory-related miRNAs, miRNA-155 and miRNA-146a, was reduced in astrocytes from active and chronic active MS lesions in white and grey matter, suggesting a lesser direct pathogenetic role for these miRNAs in astrocytes. miRNAs within the categories regulating aquaporin4 (-100, -145, -320) and glutamate transport/apoptosis/neuroprotection (-124a, -181a, and -29a) showed some contrasting responses. The regional and lesion-stage differences of expression of these miRNAs indicate the remarkable ability of astrocytes to show a wide range of selective responses in the face of differing insults and phases of resolution.


Subject(s)
Astrocytes/metabolism , Astrocytes/pathology , Brain/pathology , MicroRNAs/metabolism , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Brain/metabolism , Brain Ischemia/complications , Brain Ischemia/metabolism , Encephalitis/complications , Encephalitis/metabolism , Female , Gray Matter/pathology , Humans , Male , Multiple Sclerosis/etiology , White Matter/pathology
8.
J Nucl Med ; 60(1): 100-106, 2019 01.
Article in English | MEDLINE | ID: mdl-29777003

ABSTRACT

SUV ratios (SUVRs) are commonly used to quantify tracer uptake in amyloid-ß PET. Here, we explore the impact of target and reference region-of-interest (ROI) selection on SUVR effect sizes using interventional data from the ongoing phase 1b PRIME study (NCT01677572) of aducanumab (BIIB037) in patients with prodromal or mild Alzheimer disease. Methods: The florbetapir PET SUVR was calculated at baseline (screening) and at weeks 26 and 54 for patients randomized to receive placebo and each of 4 aducanumab doses (1, 3, 6, and 10 mg/kg) using the whole cerebellum, cerebellar gray matter, cerebellar white matter, pons, and subcortical white matter as reference regions. In addition to the prespecified composite cortex target ROI, individual cerebral cortical ROIs were assessed as targets. Results: Of the reference regions used, subcortical white matter, cerebellar white matter, and the pons, alone or in combination, generated the largest effect sizes. The use of the anterior cingulate cortex as a target ROI resulted in larger effect sizes than the use of the composite cortex. SUVR calculations were not affected by correction for brain volume changes over time. Conclusion: Dose- and time-dependent reductions in the amyloid PET SUVR were consistently observed with aducanumab only in cortical regions prone to amyloid plaque deposition, regardless of the reference region used. These data support the hypothesis that florbetapir SUVR responses associated with aducanumab treatment are a result of specific dose- and time-dependent reductions in the amyloid burden in patients with Alzheimer disease.


Subject(s)
Amyloid/metabolism , Antibodies, Monoclonal, Humanized/metabolism , Positron-Emission Tomography/standards , Adult , Biological Transport , Female , Humans , Image Processing, Computer-Assisted , Male , Reference Standards
9.
Mol Neurobiol ; 56(6): 4175-4191, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30288696

ABSTRACT

Folate is an important B vitamin required for methylation reactions, nucleotide and neurotransmitter synthesis, and maintenance of homocysteine at nontoxic levels. Its metabolism is tightly linked to that of choline, a precursor to acetylcholine and membrane phospholipids. Low folate intake and genetic variants in folate metabolism, such as the methylenetetrahydrofolate reductase (MTHFR) 677 C>T polymorphism, have been suggested to impact brain function and increase the risk for cognitive decline and late-onset Alzheimer's disease. Our study aimed to assess the impact of genetic and nutritional disturbances in folate metabolism, and their potential interaction, on features of cognitive decline and brain biochemistry in a mouse model. Wild-type and Mthfr+/- mice, a model for the MTHFR 677 C>T polymorphism, were fed control or folate-deficient diets from weaning until 8 and 10 months of age. We observed short-term memory impairment measured by the novel object paradigm, altered transcriptional levels of synaptic markers and epigenetic enzymes, as well as impaired choline metabolism due to the Mthfr+/- genotype in cortex or hippocampus. We also detected changes in mRNA levels of Presenillin-1, neurotrophic factors, one-carbon metabolic and epigenetic enzymes, as well as reduced levels of S-adenosylmethionine and acetylcholine, due to the folate-deficient diet. These findings shed further insights into the mechanisms by which genetic and dietary folate metabolic disturbances increase the risk for cognitive decline and suggest that these mechanisms are distinct.


Subject(s)
Aging/pathology , Brain/pathology , Diet , Folic Acid/metabolism , Homocystinuria/complications , Methylenetetrahydrofolate Reductase (NADPH2)/deficiency , Muscle Spasticity/complications , Amyloid beta-Peptides/metabolism , Animals , Anxiety/complications , Anxiety/physiopathology , Brain/physiopathology , Cell Survival , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Choline/metabolism , CpG Islands/genetics , DNA Methylation/genetics , Epigenesis, Genetic , Glutamic Acid/metabolism , Homocystinuria/physiopathology , Liver/metabolism , Male , Memory Disorders/complications , Memory Disorders/physiopathology , Memory, Short-Term , Methylation , Mice, Inbred BALB C , Muscle Spasticity/physiopathology , Nerve Growth Factors/metabolism , Neurons/pathology , Phospholipids/metabolism , Psychotic Disorders/complications , Psychotic Disorders/physiopathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , S-Adenosylmethionine/metabolism , Synaptic Transmission
10.
J Neurosci ; 38(20): 4655-4665, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29712788

ABSTRACT

The axon guidance cue receptor DCC (deleted in colorectal cancer) plays a critical role in the organization of mesocorticolimbic pathways in rodents. To investigate whether this occurs in humans, we measured (1) anatomical connectivity between the substantia nigra/ventral tegmental area (SN/VTA) and forebrain targets, (2) striatal and cortical volumes, and (3) putatively associated traits and behaviors. To assess translatability, morphometric data were also collected in Dcc-haploinsufficient mice. The human volunteers were 20 DCC+/- mutation carriers, 16 DCC+/+ relatives, and 20 DCC+/+ unrelated healthy volunteers (UHVs; 28 females). The mice were 11 Dcc+/- and 16 wild-type C57BL/6J animals assessed during adolescence and adulthood. Compared with both control groups, the human DCC+/- carriers exhibited the following: (1) reduced anatomical connectivity from the SN/VTA to the ventral striatum [DCC+/+: p = 0.0005, r(effect size) = 0.60; UHV: p = 0.0029, r = 0.48] and ventral medial prefrontal cortex (DCC+/+: p = 0.0031, r = 0.53; UHV: p = 0.034, r = 0.35); (2) lower novelty-seeking scores (DCC+/+: p = 0.034, d = 0.82; UHV: p = 0.019, d = 0.84); and (3) reduced striatal volume (DCC+/+: p = 0.0009, d = 1.37; UHV: p = 0.0054, d = 0.93). Striatal volumetric reductions were also present in Dcc+/- mice, and these were seen during adolescence (p = 0.0058, d = 1.09) and adulthood (p = 0.003, d = 1.26). Together these findings provide the first evidence in humans that an axon guidance gene is involved in the formation of mesocorticolimbic circuitry and related behavioral traits, providing mechanisms through which DCC mutations might affect susceptibility to diverse neuropsychiatric disorders.SIGNIFICANCE STATEMENT Opportunities to study the effects of axon guidance molecules on human brain development have been rare. Here, the identification of a large four-generational family that carries a mutation to the axon guidance molecule receptor gene, DCC, enabled us to demonstrate effects on mesocorticolimbic anatomical connectivity, striatal volumes, and personality traits. Reductions in striatal volumes were replicated in DCC-haploinsufficient mice. Together, these processes might influence mesocorticolimbic function and susceptibility to diverse neuropsychiatric disorders.


Subject(s)
DCC Receptor/genetics , Limbic System/physiopathology , Neural Pathways/physiopathology , Prefrontal Cortex/physiopathology , Adult , Aging/psychology , Animals , Axons , Exploratory Behavior , Female , Heterozygote , Humans , Limbic System/diagnostic imaging , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Neural Pathways/diagnostic imaging , Personality Disorders/genetics , Personality Disorders/psychology , Prefrontal Cortex/diagnostic imaging , Substance-Related Disorders/genetics , Substance-Related Disorders/psychology , Substantia Nigra/diagnostic imaging , Substantia Nigra/physiopathology , Ventral Tegmental Area/diagnostic imaging , Ventral Tegmental Area/physiopathology , Young Adult
11.
Neuroimage Clin ; 16: 222-233, 2017.
Article in English | MEDLINE | ID: mdl-28794981

ABSTRACT

In this work, we propose a diffusion MRI protocol for mining Parkinson's disease diffusion MRI datasets and recover robust disease-specific biomarkers. Using advanced high angular resolution diffusion imaging (HARDI) crossing fiber modeling and tractography robust to partial volume effects, we automatically dissected 50 white matter (WM) fascicles. These fascicles connect deep nuclei (thalamus, putamen, pallidum) to different cortical functional areas (associative, motor, sensorimotor, limbic), basal forebrain and substantia nigra. Then, among these 50 candidate WM fascicles, only the ones that passed a test-retest reproducibility procedure qualified for further tractometry analysis. Leveraging the unique 2-timepoints test-retest Parkinson's Progression Markers Initiative (PPMI) dataset of over 600 subjects, we found statistically significant differences in tract profiles along the subcortico-cortical pathways between Parkinson's disease patients and healthy controls. In particular, significant increases in FA, apparent fiber density, tract-density and generalized FA were detected in some locations of the nigro-subthalamo-putaminal-thalamo-cortical pathway. This connection is one of the major motor circuits balancing the coordination of motor output. Detailed and quantifiable knowledge on WM fascicles in these areas is thus essential to improve the quality and outcome of Deep Brain Stimulation, and to target new WM locations for investigation.


Subject(s)
Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , White Matter/pathology , Biomarkers , Brain/diagnostic imaging , Data Mining , Databases, Factual , Female , Humans , Male , Middle Aged , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Reproducibility of Results , White Matter/diagnostic imaging
12.
Hum Mol Genet ; 26(5): 888-900, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28069796

ABSTRACT

Methylenetetrahydrofolate reductase (MTHFR) generates methyltetrahydrofolate for methylation reactions. Severe MTHFR deficiency results in homocystinuria and neurologic impairment. Mild MTHFR deficiency (677C > T polymorphism) increases risk for complex traits, including neuropsychiatric disorders. Although low dietary folate impacts brain development, recent concerns have focused on high folate intake following food fortification and increased vitamin use. Our goal was to determine whether high dietary folate during pregnancy affects brain development in murine offspring. Female mice were placed on control diet (CD) or folic acid-supplemented diet (FASD) throughout mating, pregnancy and lactation. Three-week-old male pups were evaluated for motor and cognitive function. Tissues from E17.5 embryos, pups and dams were collected for choline/methyl metabolite measurements, immunoblotting or gene expression of relevant enzymes. Brains were examined for morphology of hippocampus and cortex. Pups of FASD mothers displayed short-term memory impairment, decreased hippocampal size and decreased thickness of the dentate gyrus. MTHFR protein levels were reduced in FASD pup livers, with lower concentrations of phosphocholine and glycerophosphocholine in liver and hippocampus, respectively. FASD pup brains showed evidence of altered acetylcholine availability and Dnmt3a mRNA was reduced in cortex and hippocampus. E17.5 embryos and placentas from FASD dams were smaller. MTHFR protein and mRNA were reduced in embryonic liver, with lower concentrations of choline, betaine and phosphocholine. Embryonic brain displayed altered development of cortical layers. In summary, high folate intake during pregnancy leads to pseudo-MTHFR deficiency, disturbed choline/methyl metabolism, embryonic growth delay and memory impairment in offspring. These findings highlight the unintended negative consequences of supplemental folic acid.


Subject(s)
Folic Acid/adverse effects , Homocystinuria/genetics , Memory, Short-Term/drug effects , Methylenetetrahydrofolate Reductase (NADPH2)/deficiency , Muscle Spasticity/genetics , Acetylcholine/genetics , Acetylcholine/metabolism , Animals , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Diet/adverse effects , Female , Folic Acid/administration & dosage , Homocystinuria/chemically induced , Homocystinuria/pathology , Liver/drug effects , Liver/metabolism , Memory Disorders/chemically induced , Memory Disorders/physiopathology , Methylation , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Mice , Muscle Spasticity/chemically induced , Muscle Spasticity/pathology , Pregnancy , Psychotic Disorders/genetics , Psychotic Disorders/pathology
13.
J Cereb Blood Flow Metab ; 36(12): 2058-2071, 2016 12.
Article in English | MEDLINE | ID: mdl-27301477

ABSTRACT

Glucose hypometabolism in the pre-clinical stage of Alzheimer's disease (AD) has been primarily associated with the APOE ɛ4 genotype, rather than fibrillar ß-amyloid. In contrast, aberrant patterns of metabolic connectivity are more strongly related to ß-amyloid burden than APOE ɛ4 status. A major limitation of previous studies has been the dichotomous classification of subjects as amyloid-positive or amyloid-negative. Dichotomous treatment of a continuous variable, such as ß-amyloid, potentially obscures the true relationship with metabolism and reduces the power to detect significant changes in connectivity. In the present work, we assessed alterations of glucose metabolism and metabolic connectivity as continuous function of ß-amyloid burden using positron emission tomography scans from the Alzheimer's Disease Neuroimaging Initiative study. Modeling ß-amyloid as a continuous variable resulted in better model fits and improved power compared to the dichotomous model. Using this continuous model, we found that both APOE ɛ4 genotype and ß-amyloid burden are strongly associated with glucose hypometabolism at early stages of Alzheimer's disease. We also determined that the cumulative effects of ß-amyloid deposition result in a particular pattern of altered metabolic connectivity, which is characterized by global, synchronized hypometabolism at early stages of the disease process, followed by regionally heterogeneous, progressive hypometabolism.


Subject(s)
Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , Glucose Metabolism Disorders/metabolism , Alzheimer Disease/metabolism , Animals , Apolipoprotein E4/genetics , Humans , Models, Theoretical , Neuroimaging/methods , Positron-Emission Tomography/methods
14.
J Neuropathol Exp Neurol ; 75(2): 156-66, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26802178

ABSTRACT

Anatomic distribution and age are variables linked to functions of astrocytes under physiologic and pathologic conditions. We measured the relative expression of a panel of microRNAs (miRNAs) in astrocytes captured by laser micro-dissection from normal human adult white and grey matter, human fetal white matter and germinal matrix samples. Although expression of most miRNAs was comparable between adult and fetal samples, regional differences were observed. In the adult cerebral cortex, expression of miRNAs in morphologically distinct inter-laminar astrocytes underlying the glial limitans differed from those in deeper cortical layers, suggesting functional specialization possibly related to structural stability and defense from potentially harmful factors in the cerebrospinal fluid. Differences between adult white and grey matter miRNA expression included higher expression of pro-inflammatory miRNAs in the former, potentially contributing to differences in inflammation between grey and white matter plaques in multiple sclerosis. Lower expression of miRNAs in fetal versus adult white matter astrocytes likely reflects the immaturity of these migrating cells. Highly expressed miRNAs in the fetal germinal matrix are probably relevant in development and also recapitulate some responses to injury. Future studies can address regional alterations of miRNA expression in pathological conditions.


Subject(s)
Aging/metabolism , Astrocytes/metabolism , MicroRNAs/genetics , Adult , Aged , Female , Fetus/metabolism , Gene Expression Profiling , Glial Fibrillary Acidic Protein/biosynthesis , Glial Fibrillary Acidic Protein/genetics , Gray Matter/growth & development , Gray Matter/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Middle Aged , Pregnancy , White Matter/growth & development , White Matter/metabolism , Young Adult
15.
J Exp Med ; 212(10): 1529-49, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26347470

ABSTRACT

Inactivating mutations of the NF-κB essential modulator (NEMO), a key component of NF-κB signaling, cause the genetic disease incontinentia pigmenti (IP). This leads to severe neurological symptoms, but the mechanisms underlying brain involvement were unclear. Here, we show that selectively deleting Nemo or the upstream kinase Tak1 in brain endothelial cells resulted in death of endothelial cells, a rarefaction of brain microvessels, cerebral hypoperfusion, a disrupted blood-brain barrier (BBB), and epileptic seizures. TAK1 and NEMO protected the BBB by activating the transcription factor NF-κB and stabilizing the tight junction protein occludin. They also prevented brain endothelial cell death in a NF-κB-independent manner by reducing oxidative damage. Our data identify crucial functions of inflammatory TAK1-NEMO signaling in protecting the brain endothelium and maintaining normal brain function, thus explaining the neurological symptoms associated with IP.


Subject(s)
Brain/blood supply , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Kinase Kinases/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Cerebrovascular Circulation/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Epilepsy/genetics , Female , I-kappa B Kinase/metabolism , Incontinentia Pigmenti/metabolism , Incontinentia Pigmenti/pathology , Intracellular Signaling Peptides and Proteins/genetics , MAP Kinase Kinase Kinases/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Occludin/metabolism , TNF Receptor-Associated Factor 6/metabolism , Transcription Factor RelA/metabolism
16.
J Nucl Med ; 56(9): 1351-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26135108

ABSTRACT

UNLABELLED: Classification of subjects on the basis of amyloid PET scans is increasingly being used in research studies and clinical practice. Although qualitative, visual assessment is currently the gold standard approach, automated classification techniques are inherently more reproducible and efficient. The objective of this work was to develop a statistical approach for the automated classification of subjects with different levels of cognitive impairment into a group with low amyloid levels (AßL) and a group with high amyloid levels (AßH) through the use of amyloid PET data from the Alzheimer Disease Neuroimaging Initiative study. METHODS: In our framework, an iterative, voxelwise, regularized discriminant analysis is combined with a receiver operating characteristic approach that optimizes the selection of a region of interest (ROI) and a cutoff value for the automated classification of subjects into the AßL and AßH groups. The robustness, spatial stability, and generalization of the resulting target ROIs were evaluated by use of the standardized uptake value ratio for (18)F-florbetapir PET images from subjects who served as healthy controls, subjects who had mild cognitive impairment, and subjects who had Alzheimer disease and were participating in the Alzheimer Disease Neuroimaging Initiative study. RESULTS: We determined that several iterations of the discriminant analysis improved the classification of subjects into the AßL and AßH groups. We found that an ROI consisting of the posterior cingulate cortex/precuneus and the medial frontal cortex yielded optimal group separation and showed good stability across different reference regions and cognitive cohorts. A key step in this process was the automated determination of the cutoff value for group separation, which was dependent on the reference region used for the standardized uptake value ratio calculation and which was shown to have a relatively narrow range across subject groups. CONCLUSION: We developed a data-driven approach for the determination of an optimal target ROI and an associated cutoff value for the separation of subjects into the AßL and AßH groups. Future work should include the application of this process to other datasets to facilitate the determination of the translatability of the optimal ROI obtained in this study to other populations. Ideally, the accuracy of our target ROI and cutoff value could be further validated with PET-autopsy data from large-scale studies. It is anticipated that this approach will be extremely useful for the enrichment of study populations in clinical trials involving putative disease-modifying therapeutic agents for Alzheimer disease.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Aniline Compounds/pharmacokinetics , Ethylene Glycols/pharmacokinetics , Positron-Emission Tomography/methods , Aged , Algorithms , Brain/diagnostic imaging , Brain/metabolism , Female , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Male , Radiopharmaceuticals , Reproducibility of Results , Sensitivity and Specificity , Severity of Illness Index , Tissue Distribution
17.
Data Brief ; 4: 368-73, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26217818

ABSTRACT

We provide a detailed morphometric analysis of eight transmission electron micrographs (TEMs) obtained from the corpus callosum of one cynomolgus macaque. The raw TEM images are included in the article, along with the distributions of the axon caliber and the myelin g-ratio in each image. The distributions are analyzed to determine the relationship between axon caliber and g-ratio, and compared against the aggregate metrics (myelin volume fraction, fiber volume fraction, and the aggregate g-ratio), as defined in the accompanying research article entitled 'In vivo histology of the myelin g-ratio with magnetic resonance imaging' (Stikov et al., NeuroImage, 2015).

18.
Neuroimage ; 118: 397-405, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26004502

ABSTRACT

The myelin g-ratio, defined as the ratio between the inner and the outer diameter of the myelin sheath, is a fundamental property of white matter that can be computed from a simple formula relating the myelin volume fraction to the fiber volume fraction or the axon volume fraction. In this paper, a unique combination of magnetization transfer, diffusion imaging and histology is presented, providing a novel method for in vivo magnetic resonance imaging of the axon volume fraction and the myelin g-ratio. Our method was demonstrated in the corpus callosum of one cynomolgus macaque, and applied to obtain full-brain g-ratio maps in one healthy human subject and one multiple sclerosis patient. In the macaque, the g-ratio was relatively constant across the corpus callosum, as measured by both MRI and electron microscopy. In the human subjects, the g-ratio in multiple sclerosis lesions was higher than in normal appearing white matter, which was in turn higher than in healthy white matter. Measuring the g-ratio brings us one step closer to fully characterizing white matter non-invasively, making it possible to perform in vivo histology of the human brain during development, aging, disease and treatment.


Subject(s)
Axons/ultrastructure , Brain/ultrastructure , Diffusion Magnetic Resonance Imaging/methods , Myelin Sheath/ultrastructure , Adult , Animals , Corpus Callosum/ultrastructure , Humans , Macaca fascicularis , Magnetic Phenomena , Male , Mice, Neurologic Mutants , Multiple Sclerosis/pathology
19.
J Cereb Blood Flow Metab ; 34(12): 1936-43, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25294129

ABSTRACT

Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high ß-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Connectome , Metabolome/physiology , Models, Neurological , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid/metabolism , Brain/cytology , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Databases, Factual , Female , Fluorodeoxyglucose F18 , Humans , Male , Middle Aged , Multivariate Analysis , Positron-Emission Tomography/methods , Radiopharmaceuticals
20.
J Alzheimers Dis ; 42(3): 813-21, 2014.
Article in English | MEDLINE | ID: mdl-24927705

ABSTRACT

Abnormal neuronal accumulation and modification of TAR DNA binding protein 43 (TDP-43) have recently been discovered to be defining histopathological features of particular subtypes of frontotemporal dementia and amyotrophic lateral sclerosis, and are also common in aging, particularly coexisting with hippocampal sclerosis and Alzheimer's disease pathology. This case report describes a 72 year old Hispanic male with no family history of neurological disease, who presented at age 59 with obsessive behavior, anxiety, agitation, and dysphasia. Positron emission tomography imaging using the amyloid ligand 18F florbetapir (Amyvid) was positive. Postmortem examination revealed frequent diffuse and neuritic amyloid plaques throughout the cerebral cortex, thalamus, and striatum, Braak stage II neurofibrillary degeneration, and frequent frontal and temporal cortex TDP-43-positive neurites with rare nuclear inclusions. The case is unusual and instructive because of the co-existence of frequent cortical and diencephalic amyloid plaques with extensive TDP-43-positive histopathology in the setting of early-onset dementia and because it demonstrates that a positive cortical amyloid imaging signal in a subject with dementia does not necessarily establish that Alzheimer's disease is the sole cause.


Subject(s)
Aniline Compounds , DNA-Binding Proteins/genetics , Ethylene Glycols , Frontotemporal Lobar Degeneration/diagnostic imaging , Plaque, Amyloid/diagnostic imaging , Positron-Emission Tomography/methods , Aged , Frontotemporal Lobar Degeneration/complications , Frontotemporal Lobar Degeneration/genetics , Humans , Inclusion Bodies/metabolism , Male , Plaque, Amyloid/complications , Plaque, Amyloid/genetics , Plaque, Amyloid/pathology , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...