Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 64(7): 3658-3676, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33729773

ABSTRACT

RV521 is an orally bioavailable inhibitor of respiratory syncytial virus (RSV) fusion that was identified after a lead optimization process based upon hits that originated from a physical property directed hit profiling exercise at Reviral. This exercise encompassed collaborations with a number of contract organizations with collaborative medicinal chemistry and virology during the optimization phase in addition to those utilized as the compound proceeded through preclinical and clinical evaluation. RV521 exhibited a mean IC50 of 1.2 nM against a panel of RSV A and B laboratory strains and clinical isolates with antiviral efficacy in the Balb/C mouse model of RSV infection. Oral bioavailability in preclinical species ranged from 42 to >100% with evidence of highly efficient penetration into lung tissue. In healthy adult human volunteers experimentally infected with RSV, a potent antiviral effect was observed with a significant reduction in viral load and symptoms compared to placebo.


Subject(s)
Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , Respiratory Syncytial Virus, Human/drug effects , Virus Internalization/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacokinetics , Biological Availability , Cell Line, Tumor , Clinical Trials as Topic , Drug Discovery , Humans , Microbial Sensitivity Tests , Protein Binding , Viral Fusion Proteins/metabolism
2.
Molecules ; 25(6)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32210055

ABSTRACT

Given the increase in resistance to antibacterial agents, there is an urgent need for the development of new agents with novel modes of action. As an interim solution, it is also prudent to reinvestigate old or abandoned antibacterial compounds to assess their efficacy in the context of widespread resistance to conventional agents. In the 1970s, much work was performed on the development of peptide mimetics, exemplified by the phosphonopeptide, alafosfalin. We investigated the activity of alafosfalin, di-alanyl fosfalin and ß-chloro-L-alanyl-ß-chloro-L-alanine against 297 bacterial isolates, including carbapenemase-producing Enterobacterales (CPE) (n = 128), methicillin-resistant Staphylococcus aureus (MRSA) (n = 37) and glycopeptide-resistant enterococci (GRE) (n = 43). The interaction of alafosfalin with meropenem was also examined against 20 isolates of CPE. The MIC50 and MIC90 of alafosfalin for CPE were 1 mg/L and 4 mg/L, respectively and alafosfalin acted synergistically when combined with meropenem against 16 of 20 isolates of CPE. Di-alanyl fosfalin showed potent activity against glycopeptide-resistant isolates of Enterococcus faecalis (MIC90; 0.5 mg/L) and Enterococcus faecium (MIC90; 2 mg/L). Alafosfalin was only moderately active against MRSA (MIC90; 8 mg/L), whereas ß-chloro-L-alanyl-ß-chloro-L-alanine was slightly more active (MIC90; 4 mg/L). This study shows that phosphonopeptides, including alafosfalin, may have a therapeutic role to play in an era of increasing antibacterial resistance.


Subject(s)
Anti-Bacterial Agents , Enterococcus faecalis/growth & development , Enterococcus faecium/growth & development , Methicillin-Resistant Staphylococcus aureus/growth & development , Peptides , Phosphoproteins , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Peptides/chemistry , Peptides/pharmacology , Phosphoproteins/chemistry , Phosphoproteins/pharmacology
3.
J Med Chem ; 59(10): 4476-87, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27094856

ABSTRACT

A series of novel 8-aminophenoxazin-3-one and 7-aminophenoxazin-3-one chromogens and their corresponding ß-alanine derivatives were synthesized and evaluated for their ability to detect ß-alanyl aminopeptidase activity in bacteria known to hydrolyze ß-alanine derivatized substrates. The results provided insight into the structural requirements for effective visualization of enzymatic activity and the mechanism of formation of phenoxazinon-3-ones. 8-Aminophenoxazin-3-one substrates 23c, 23d, and 23e were prepared in good to high overall yield and were selective for ß-alanyl aminopeptidase activity in bacteria, producing a lighter agar background coloration facilitating visualization of colored colonies, with variable localization to the colonies, but had lower sensitivities for the detection of Pseudomonas aeruginosa in comparison to the analogous 7-aminophenoxazin-3-one substrates. The synthetic methodology employed here allows the preparation of a range of substrates for evaluation and the establishment of structure-activity relationships. For example, the 2-pentyl substituted aminophenoxazin-3-one 22b performed with analogous sensitivity to the corresponding 1-pentyl-7-aminophenoxazin-3-one substrate 1 used commercially, highlighting that the position of the pentyl substituent can be varied while maintaining detection sensitivity.


Subject(s)
Anti-Bacterial Agents/pharmacology , CD13 Antigens/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Oxazines/pharmacology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , CD13 Antigens/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Microbial Sensitivity Tests , Molecular Structure , Oxazines/chemical synthesis , Oxazines/chemistry , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/isolation & purification , Structure-Activity Relationship
4.
Org Biomol Chem ; 6(4): 682-92, 2008 Feb 21.
Article in English | MEDLINE | ID: mdl-18264568

ABSTRACT

Novel 7-N-(beta-alanyl)aminophenoxazin-3-one salts 27a-d have been synthesized and tested as chromogenic substrates for beta-alanyl aminopeptidase, which is present in Pseudomonas aeruginosa, the most common respiratory pathogen in patients with cystic fibrosis. The biological results show that 7-N-(beta-alanyl)amino-1-pentylphenoxazin-3-one trifluoroacetate salt 27a is a chromogenic substrate for this bacterium, with a low degree of diffusion in nutrient media for growing bacterial cultures and a bright red colour, making it easily distinguishable from the agar background.


Subject(s)
Alanine/analogs & derivatives , Aminopeptidases/metabolism , Chromogenic Compounds/chemical synthesis , Chromogenic Compounds/pharmacology , Oxazines/chemical synthesis , Oxazines/pharmacology , Agar/chemistry , Alanine/chemical synthesis , Alanine/chemistry , Alanine/metabolism , Alanine/pharmacology , Chromogenic Compounds/metabolism , Color , Oxazines/chemistry , Oxazines/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...