Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Tissue Eng Part C Methods ; 30(7): 289-306, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946589

ABSTRACT

In the advent of tissue engineering and regenerative medicine, the demand for innovative approaches to biofabricate complex vascular structures is increasing. We describe a single-step 3D bioprinting method leveraging Aspect Biosystems RX1 technology, which integrates the crosslinking step at a flow-focusing junction, to biofabricate immortalized adult rat brain endothelial cell (SV-ARBEC)-encapsulated alginate-collagen type I hydrogel rings. This single-step biofabrication process involves the strategic layer-by-layer assembly of hydrogel rings, encapsulating SV-ARBECs in a spatially controlled manner while optimizing access to media and nutrients. The spatial arrangement of the SV-ARBECs within the rings promotes spontaneous angiogenic network formation and the constrained deposition of cells within the hydrogel matrix facilitates tissue-like organized vascular-like network development. This approach provides a platform that can be adapted to many different endothelial cell types and leveraged to better understand the mechanisms driving angiogenesis and vascular-network formation in 3D bioprinted constructs supporting the development of more complex tissue and disease models for advancing drug discovery, tissue engineering, and regenerative medicine applications.


Subject(s)
Alginates , Bioprinting , Collagen Type I , Endothelial Cells , Hydrogels , Neovascularization, Physiologic , Printing, Three-Dimensional , Alginates/chemistry , Alginates/pharmacology , Animals , Rats , Neovascularization, Physiologic/drug effects , Bioprinting/methods , Hydrogels/chemistry , Collagen Type I/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Tissue Engineering/methods , Tissue Scaffolds/chemistry
2.
F S Sci ; 3(2): 130-139, 2022 05.
Article in English | MEDLINE | ID: mdl-35560010

ABSTRACT

OBJECTIVE: To study the feasibility and spermatogenic potential of 3-dimensional (3D) bioprinting personalized human testicular cells derived from a patient with nonobstructive azoospermia (NOA). DESIGN: A human testicular biopsy from a single donor with NOA was dissociated into single cells, expanded in vitro, and 3D bioprinted into tubular structures akin to the seminiferous tubule using AGC-10 bioink and an RX1 bioprinter with a CENTRA coaxial microfluidic printhead from Aspect Biosystems. Three-dimensional organoid cultures were used as a nonbioprinted in vitro control. SETTING: Academic medical center. PATIENT(S): A 31-year-old man with NOA with testis biopsy demonstrating Sertoli cell-only syndrome. INTERVENTION(S): Three-dimensional bioprinting and in vitro culturing of patient-derived testis cells. MAIN OUTCOME MEASURE(S): Cellular viability after printing was determined, along with the expression of phenotypic and spermatogenic functional genetic markers after 12 days of in vitro culture. RESULT(S): Testicular cultures were expandable in vitro and generated sufficiently large numbers for 3D bioprinting at 35 million cells per mL of bioink. Viability 24 hours after printing was determined to be 93.4% ± 2.4%. Immunofluorescence staining for the phenotype markers SRY-Box transcription factor 9, insulin-like 3, actin alpha 2 smooth muscle, and synaptonemal complex protein 3 after 12 days was positive, confirming the presence of Sertoli, Leydig, peritubular myoid, and meiotic germ cells. Reverse transcription qualitative polymerase chain reaction analysis showed that after 12 days in spermatogenic media, the bioprints substantially up-regulated spermatogenic gene expression on par with nonbioprinted controls and showed a particularly significant improvement in genes involved in spermatogonial stem cell maintenance: inhibitor of deoxyribonucleic acid binding 4 by 365-fold; fibroblast growth factor 3 by 94,152-fold; stem cell growth factor receptor KIT by twofold; stimulated by retinoic acid 8 by 125-fold; deleted in azoospermia-like by 114-fold; synaptonemal complex protein 3 by sevenfold; zona pellucida binding protein by twofold; transition protein 1 by 2,908-fold; and protamine 2 by 11-fold. CONCLUSION(S): This study demonstrates for the first time the feasibility of 3D bioprinting adult human testicular cells. We show that the bioprinting process is compatible with high testicular cell viability and without loss of the main somatic phenotypes within the testis tissue. We demonstrate an increase in germ cell markers in the 3D bioprinted tubules after 12 days of in vitro culture. This platform may carry future potential for disease modeling and regenerative opportunities in a personalized medicine framework.


Subject(s)
Azoospermia , Testis , Azoospermia/genetics , Humans , Male , Sertoli Cells , Spermatogenesis/genetics
3.
Nanomaterials (Basel) ; 10(11)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33121012

ABSTRACT

Multifunctional micro- and nanoparticles have potential uses in advanced detection methods, such as the combined separation and detection of biomolecules. Combining multiple tasks is possible but requires the specific tailoring of these particles during synthesis or further functionalization. Here, we synthesized nanostructured gold shells on magnetic particle cores and demonstrated the use of them in surface-enhanced Raman scattering (SERS). To grow the gold shells, gold seeds were bound to silica-coated iron oxide aggregate particles. We explored different functional groups on the surface to achieve different interactions with gold seeds. Then, we used an aqueous cetyltrimethylammonium bromide (CTAB)-based strategy to grow the seeds into spikes. We investigated the influence of the surface chemistry on seed attachment and on further growth of spikes. We also explored different experimental conditions to achieve either spiky or bumpy plasmonic structures on the particles. We demonstrated that the particles showed SERS enhancement of a model Raman probe molecule, 2-mercaptopyrimidine, on the order of 104. We also investigated the impact of gold shell morphology-spiky or bumpy-on SERS enhancements and on particle stability over time. We found that spiky shells lead to greater enhancements, however their high aspect ratio structures are less stable and morphological changes occur more quickly than observed with bumpy shells.

4.
Talanta ; 182: 259-266, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29501150

ABSTRACT

Combined separation and detection of biomolecules has the potential to speed up and improve the sensitivity of disease detection, environmental testing, and biomolecular analysis. In this work, we synthesized magnetic particles coated with spiky nanostructured gold shells and used them to magnetically separate out and detect oligonucleotides using SERS. The distance dependence of the SERS signal was then harnessed to detect DNA hybridization using a Raman label bound to a hairpin probe. The distance of the Raman label from the surface increased upon complementary DNA hybridization, leading to a decrease in signal intensity. This work demonstrates the use of the particles for combined separation and detection of oligonucleotides without the use of an extrinsic tag or secondary hybridization step.


Subject(s)
Biosensing Techniques , DNA, Single-Stranded/analysis , DNA/analysis , Magnetite Nanoparticles/chemistry , Nanostructures/chemistry , Spectrum Analysis, Raman/standards , Chlorides/chemistry , DNA Probes/chemical synthesis , DNA Probes/chemistry , Ferric Compounds/chemistry , Gold/chemistry , Humans , Inverted Repeat Sequences , Magnetite Nanoparticles/ultrastructure , Nanostructures/ultrastructure , Nucleic Acid Hybridization , Oligonucleotides/chemistry , Sensitivity and Specificity , Silicon Dioxide/chemistry , Solutions
5.
Chemistry ; 21(41): 14555-61, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26285049

ABSTRACT

Despite the numerous studies on the self-assembled monolayers (SAMs) of alkylthiols on gold, the mechanisms involved, especially the nature and influence of the thiol-gold interface are still under debate. In this work the adsorption of aminothiols on Au(111) surfaces has been studied by using surface IR and X-ray photoelectron spectroscopy (XPS) as well as by density functional theory (DFT) modeling. Two aminothiols were used, cysteamine (CEA) and mercaptoundecylamine (MUAM), which contain two and eleven carbon atoms, respectively. By combining experimental and theoretical methods, it was possible to draw a molecular picture of the thiol-gold interface. The long-chain aminothiol produced better ordered SAMs, but, interestingly, the XPS data showed different sulfur binding environments depending on the alkyl chain length; an additional peak at low binding energy was observed upon CEA adsorption, which indicates the presence of sulfur in a different environment. DFT modeling showed that the positions of the sulfur atoms in the SAMs on gold with similar unit cells [(2√3×2√3)R30°] depended on the length of the alkyl chain. Short-chain alkylthiol SAMs were adsorbed more strongly than long-chain thiol SAMs and were shown to induce surface reconstruction by extracting atoms from the surface, possibly forming adatom/vacancy combinations that lead to the additional XPS peak. In the case of short alkylthiols, the thiol-gold interface governs the layer, CEA adsorbs strongly, and the mechanism is closer to single-molecule adsorption than self-assembly, whereas for long chains, interactions between alkyl chains drive the system to self-assembly, leading to a higher level of SAM organization and restricting the influence of the sulfur-gold interface.

6.
Colloids Surf B Biointerfaces ; 116: 489-96, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24561503

ABSTRACT

Controlled immobilization of proteins is crucial in many applications, including biosensors. Allergen biosensing, for example, requires molecular recognition of suitably immobilized proteins by specific antibodies and sensitive measurement of this interaction. Self-assembled monolayers (SAMs), terminated by active functions, and are of great interest for the immobilization of biomolecules. The efficiency of further biorecognition involving molecules immobilized on these surfaces demonstrates an interesting dependence on the chain length and terminal function of the SAM. This motivated us to investigate adsorption of two proteins both known as milk allergens-ß-lactoglobulin and apo-transferrin-on amine-terminated SAMs. We varied the chain length by using either short or long chain amine-terminated thiols (cysteamine, CEA, and 11-mercaptoundecylamine, MUAM). We also investigated the influence of the addition of a rigid cross-linker, p-phenylene diisothiocyanate (PDITC), to these amine layers prior to protein adsorption. Protein binding was studied using polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS) and atomic force microscopy (AFM) to characterize their amount and dispersion. We found that protein immobilization varies with SAM chain length and is also influenced by the presence of a cross-linker. The presence of a rigid cross-linker favours the binding of proteins on long chain SAMs, while the effect is almost nonexistent on shorter chains. In addition, the presence of the cross-linker induces a better dispersion of the proteins on the surfaces, regardless of the length of the thiols forming the SAMs. The effects of chain length and chemistry of protein binding are discussed.


Subject(s)
Apoproteins/chemistry , Gold/chemistry , Lactoglobulins/chemistry , Transferrin/chemistry , Adsorption , Amines/chemistry , Molecular Structure , Particle Size , Sulfhydryl Compounds/chemistry , Surface Properties
7.
Macromol Biosci ; 12(6): 724-39, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22416018

ABSTRACT

SPR biosensing is increasingly popular for the detection of a multitude of biomolecules. It offers label-free detection and study of proteins, nucleic acids, and other biomolecules in real time. A recent trend involves incorporation of AuNPs, either within the sensing surface itself or as signal enhancing tagging molecules. The importance of AuNP and detecting agent spacing is described and techniques using macromolecular spacing aids are highlighted. Recent methods to enhance SPR detection capabilities using gold nanoparticles are reviewed, as well as device fabrication and the results of incorporation. SPR detection is a highly versatile method for the detection of biomolecules and, with the incorporation of AuNPs, shows promise in extending it to a number of new applications.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Surface Plasmon Resonance/methods , Animals , Humans , Sensitivity and Specificity , Surface Plasmon Resonance/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL