Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 580(7805): 628-635, 2020 04.
Article in English | MEDLINE | ID: mdl-32350476

ABSTRACT

Megathrust earthquakes are responsible for some of the most devastating natural disasters1. To better understand the physical mechanisms of earthquake generation, subduction zones worldwide are continuously monitored with geophysical instrumentation. One key strategy is to install stations that record signals from Global Navigation Satellite Systems2,3 (GNSS), enabling us to track the non-steady surface motion of the subducting and overriding plates before, during and after the largest events4-6. Here we use a recently developed trajectory modelling approach7 that is designed to isolate secular tectonic motions from the daily GNSS time series to show that the 2010 Maule, Chile (moment magnitude 8.8) and 2011 Tohoku-oki, Japan (moment magnitude 9.0) earthquakes were preceded by reversals of 4-8 millimetres in surface displacement that lasted several months and spanned thousands of kilometres. Modelling of the surface displacement reversal that occurred before the Tohoku-oki earthquake suggests an initial slow slip followed by a sudden pulldown of the Philippine Sea slab so rapid that it caused a viscoelastic rebound across the whole of Japan. Therefore, to understand better when large earthquakes are imminent, we must consider not only the evolution of plate interface frictional processes but also the dynamic boundary conditions from deeper subduction processes, such as sudden densification of metastable slab.

SELECTION OF CITATIONS
SEARCH DETAIL
...