Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 746110, 2021.
Article in English | MEDLINE | ID: mdl-34912307

ABSTRACT

Dengue is a serious public health concern worldwide, with ∼3 billion people at risk of contracting dengue virus (DENV) infections, with some suffering severe consequences of disease and leading to death. Currently, there is no broad use vaccine or drug available for the prevention or treatment of dengue, which leaves only anti-mosquito strategies to combat the dengue menace. The present study is an extension of our earlier study aimed at determining the in vitro and in vivo protective effects of a plant-derived phytopharmaceutical drug for the treatment of dengue. In our previous report, we had identified a methanolic extract of aerial parts of Cissampelos pareira to exhibit in vitro and in vivo anti-dengue activity against all the four DENV serotypes. The dried aerial parts of C. pareira supplied by local vendors were often found to be mixed with aerial parts of another plant of the same Menispermaceae family, Cocculus hirsutus, which shares common homology with C. pareira. In the current study, we have found C. hirsutus to have more potent anti-dengue activity as compared with C. pareira. The stem part of C. hirsutus was found to be more potent (∼25 times) than the aerial part (stem and leaf) irrespective of the extraction solvent used, viz., denatured spirit, hydro-alcohol (50:50), and aqueous. Moreover, the anti-dengue activity of stem extract in all the solvents was comparable. Hence, an aqueous extract of the stem of C. hirsutus (AQCH) was selected due to greater regulatory compliance. Five chemical markers, viz., Sinococuline, 20-Hydroxyecdysone, Makisterone-A, Magnoflorine, and Coniferyl alcohol, were identified in fingerprinting analysis. In a test of primary dengue infection in the AG129 mice model, AQCH extract at 25 mg/kg body weight exhibited protection when administered four and three times a day. The AQCH was also protective in the secondary DENV-infected AG129 mice model at 25 mg/kg/dose when administered four and three times a day. Additionally, the AQCH extract reduced serum viremia and small intestinal pathologies, viz., viral load, pro-inflammatory cytokines, and vascular leakage. Based on these findings, we have undertaken the potential preclinical development of C. hirsutus-based phytopharmaceutical, which could be studied further for its clinical development for treating dengue.

2.
Pharm Biol ; 53(3): 446-50, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25472605

ABSTRACT

CONTEXT: Rohitukine is an important precursor for the synthesis of potential anticancer drugs flavopiridol (Sanofi-Aventis) and P-276-00 (Piramal Healthcare Limited, Mumbai, India). Trunk bark of Dysoxylum binectariferum (Roxb.) Hook. f. ex Bedd. (Meliaceae) is the widely used source for isolation of rohitukine. However, removal of trunk bark threatens the survival of the tree. OBJECTIVE: To investigate the amount of rohitukine accumulated in other tissues of D. binectariferum. MATERIALS AND METHODS: Rohitukine standard was isolated from leaves of D. binectariferum. Its purity was ascertained using HR-MS and NMR. Crude extracts were prepared from different tissues of D. binectariferum. Rohitukine content in all the tissues was quantified by HPLC. RESULTS: Rohitukine accumulates in a significant amount in seeds, trunk bark, leaves, twigs, and fruits of D. binectariferum. Seeds have the highest rohitukine content (2.42%, dry weight) followed by trunk bark (1.34%, dry weight), leaves (1.064%, dry weight), twigs (0.844% dry weight), and fruits (0.4559% dry weight). DISCUSSION AND CONCLUSION: Seeds and leaves of D. binectariferum could be used as alternate renewable sources for isolation of rohitukine.


Subject(s)
Chromones/isolation & purification , Meliaceae , Piperidines/isolation & purification , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Seeds/chemistry , Chromones/metabolism , Meliaceae/metabolism , Piperidines/metabolism , Plant Extracts/metabolism , Plant Leaves/metabolism , Seeds/metabolism
3.
Food Chem Toxicol ; 48(10): 2966-71, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20732845

ABSTRACT

Ginger is an important ingredient of spice and herbals. The monitoring of toxic heavy metals in the rhizome of ginger is important for protecting public health against the hazards of metal toxicity. The concentration of volatile and non-volatile metals (As, Hg, Pb and Cd), in the soil and rhizome of Zingiber officinale were analyzed using AAS. Soil analysis profile showed uniformity in the metal contents, in active root zone and subsoil, except mercury, which was present in higher quantity in one, out of the four sectors, of the field. The infield metal content in the soil in increasing order was, cadmium < arsenic < lead < mercury. In ginger rhizome the volatile toxic heavy metals arsenic (As) and mercury (Hg) varied from not detected to 0.13 µg/g and 0.01 to 0.42 µg/g, respectively. The non-volatile metals lead (Pb) and cadmium (Cd) ranged from 0.06 to 0.64 µg/g and 0.002 to 0.03 µg/g, respectively(.) The results illustrated the findings that soil is the major but not the only source of metal accumulation in the plants. In our study, the volatile metal content (As, Hg) was found more in rhizomes collected from Himachal Pradesh while the non-volatile metals were predominant in samples from Uttarakhand.


Subject(s)
Metals, Heavy/analysis , Zingiber officinale/chemistry , Arsenic/analysis , Cadmium/analysis , Environmental Monitoring , India , Lead/analysis , Mercury/analysis , Reference Standards , Reproducibility of Results , Rhizome/chemistry , Soil/analysis , Solutions , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...