Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35591731

ABSTRACT

Aluminum matrix composites reinforced with carbon fiber have been manufactured for the first time by infiltrating an A413 aluminum alloy in carbon fiber woven using high-pressure die casting (HPDC). Composites were manufactured with unidirectional carbon fibers and with 2 × 2 twill carbon wovens. The HPDC allowed full wetting of the carbon fibers and the infiltration of the aluminum alloy in the fibers meshes using aluminum at 680 °C. There was no discontinuity at the carbon fiber-matrix interface, and porosity was kept below 0.1%. There was no degradation of the carbon fibers by their reaction with molten aluminum, and a refinement of the microstructure in the vicinity of the carbon fibers was observed due to the heat dissipation effect of the carbon fiber during manufacturing. The mechanical properties of the composite materials showed a 10% increase in Young's modulus, a 10% increase in yield strength, and a 25% increase in tensile strength, which are caused by the load transfer from the alloy to the carbon fibers. There was also a 70% increase in elongation for the unidirectionally reinforced samples because of the finer microstructure and the load transfer to the fibers, allowing the formation of larger voids in the matrix before breaking. The comparison with different mechanical models proves that there was an effective load transference from the matrix to the fibers.

2.
Materials (Basel) ; 14(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34772039

ABSTRACT

In additive manufacturing (AM), the technology and processing parameters are key elements that determine the characteristics of samples for a given material. To distinguish the effects of these variables, we used the same AISI 316L stainless steel powder with different AM techniques. The techniques used are the most relevant ones in the AM of metals, i.e., direct laser deposition (DLD) with a high-power diode laser and selective laser melting (SLM) using a fiber laser and a novel CO2 laser, a novel technique that has not yet been reported with this material. The microstructure of all samples showed austenitic and ferritic phases, which were coarser with the DLD technique than for the two SLM ones. The hardness of the fiber laser SLM samples was the greatest, but its bending strength was lower. In SLM with CO2 laser pieces, the porosity and lack of melting reduced the fracture strain, but the strength was greater than in the fiber laser SLM samples under certain build-up strategies. Specimens manufactured using DLD showed a higher fracture strain than the rest, while maintaining high strength values. In all the cases, crack surfaces were observed and the fracture mechanisms were determined. The processing conditions were compared using a normalized parameters methodology, which has also been used to explain the observed microstructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...