Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Am Soc Mass Spectrom ; 35(2): 307-316, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38265025

ABSTRACT

Ionization of volatile organic compounds (VOCs) by coinage metal ions (Cu+, Ag+, and Au+) generated by laser desorption and ionization (LDI) of a metal nanolayer in subatmospheric conditions is explored. The study was performed in a commercial subatmospheric dual MALDI/ESI ion source. Five compounds representing different VOC classes were chosen for a detailed study of the metal ionization mechanism: ethanol, acetone, acetic acid, xylene, and cyclohexane. In the gas phase, ion molecular complexes of all three metal ions were formed, typically with two ligand molecules. The successful detection of the metal complexes with VOCs strongly depended on the applied voltages across the ion source, minimizing the in-source fragmentation. The employed orbital trap with ultrahigh resolving power and sub-parts-per-million mass accuracy allowed unambiguous identification of the formed complexes based on their molecular formulas. The detection limits of the studied compounds in the gas were in the range 0.1-1.4 nmol/L. Compared to Cu+ and Ag+ ions, Au+ ions exhibited the highest reactivity, often complicating spectra by side products of reactions. On the other hand, they also allowed detecting saturated hydrocarbons, which did not produce any signals with Ag+ and Cu+.

2.
J Am Soc Mass Spectrom ; 34(7): 1459-1466, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37307240

ABSTRACT

The detection of a single entity (molecule, cell, particle, etc.) was always a challenging subject. Here we demonstrate the detection of single Ag nanoparticles (NPs) using subatmospheric pressure laser desorption/ionization mass spectrometry (LDI MS). The sample preparation, measurement conditions, generated ions, and limiting experimental factors are discussed here. We detected from 84 to 95% of the deposited 80 nm Ag NPs. The presented LDI MS platform is an alternative to laser ablation inductively coupled plasma mass spectrometry for imaging distribution of individual NPs across the sample surface and has a great potential for multiplexed mapping of low-abundance biomarkers in tissues.

3.
J Am Soc Mass Spectrom ; 34(4): 570-578, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36917818

ABSTRACT

This study focuses on mapping the spatial distribution of Au nanoparticles (NPs) by laser desorption/ionization mass spectrometry imaging (LDI MSI). Laser interaction with NPs and associated phenomena, such as change of shape, melting, migration, and release of Au ions, are explored at the single particle level. Arrays of dried droplets containing low numbers of spatially segregated NPs were reproducibly prepared by automated drop-on-demand piezo-dispensing and analyzed by LDI MSI using an ultrahigh resolution orbital trapping instrument. To enhance the signal from NPs, an in source gas-phase chemical reaction of generated Au ions with xylene was employed. The developed technique allowed the detecting, chemical characterization, and mapping of the spatial distribution of Au NPs; the ion signals were detected from as low as ten 50 nm Au NPs on a pixel. Furthermore, the Au NP melting dynamics under laser irradiation was monitored by correlative atomic force microscopy (AFM) and scanning electron microscopy (SEM). AFM measurements of Au NPs before and after LDI MSI analysis revealed changes in NP shape from a sphere to a half-ellipsoid and total volume reduction of NPs down to 45% of their initial volume.

4.
Anal Chem ; 94(51): 18114-18120, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36514811

ABSTRACT

We report a new technique for the digital mapping of biomarkers in tissues based on desorption and counting intact gold nanoparticle (Au NP) tags using infrared laser ablation single-particle inductively coupled plasma mass spectrometry (IR LA SP ICP MS). In contrast to conventional UV laser ablation, Au NPs are not disintegrated during the desorption process due to their low absorption at 2940 nm. A mass spectrometer detects up to 83% of Au NPs. The technique is demonstrated on mapping a proliferation marker, nuclear protein Ki-67, in three-dimensional (3D) aggregates of colorectal carcinoma cells, and the results are compared with confocal fluorescence microscopy and UV LA ICP MS. Precise counting of 20 nm Au NPs with a single-particle detection limit in each pixel by the new approach generates sharp distribution maps of a specific biomarker in the tissue. Advantageously, the desorption of Au NPs from regions outside the tissue is strongly suppressed. The developed methodology promises multiplex mapping of low-abundant biomarkers in numerous biological and medical applications using multielemental mass spectrometers.


Subject(s)
Laser Therapy , Metal Nanoparticles , Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Mass Spectrometry/methods , Lasers
5.
Anal Chem ; 94(25): 8928-8936, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35713244

ABSTRACT

We present a novel combination of a metal oxide laser ionization mass spectrometry imaging (MOLI MSI) technique with off-line lipid derivatization by ozone for the detection of fatty acids (FA) and their carbon-carbon double bond (C═C) positional isomers in biological tissues. MOLI MSI experiments were realized with CeO2 and TiO2 nanopowders using a vacuum matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometer in the negative mode. The catalytic properties of these metal oxides allow FA cleavage from phospholipids under UV laser irradiation. At the same time, fragile ozonides produced at the sites of unsaturation decomposed, yielding four diagnostic ions specific for the C═C positions. Advantageously, two MOLI MSI runs from a single tissue sprayed with the metal oxide suspension were performed. The first run prior to ozone derivatization revealed the distribution of FAs, while the second run after the reaction with ozone offered additional information about FA C═C isomers. The developed procedure was demonstrated on MSI of a normal mouse brain and human colorectal cancer tissues uncovering the differential distribution of FAs down to the isomer level. Compared to the histological analysis, MOLI MSI showed the distinct distribution of specific FAs in different functional parts of the brain and in healthy and cancer tissues pointing toward its biological relevance. The developed technique can be directly adopted by laboratories with MALDI TOF analyzers and help in the understanding of the local FA metabolism in tissues.


Subject(s)
Fatty Acids , Ozone , Animals , Carbon/chemistry , Fatty Acids/analysis , Lasers , Mice , Oxides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
6.
Anal Chem ; 94(12): 4889-4900, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35303408

ABSTRACT

This Feature focuses on a review of recent developments in mass spectrometry imaging (MSI) of lipid isomers in biological tissues. The tandem MS techniques utilizing online and offline chemical derivatization procedures, ion activation techniques such as ozone-induced dissociation (OzID), ultraviolet photodissociation (UVPD), or electron-induced dissociation (EID), and other techniques such as coupling of ion mobility with MSI are discussed. The importance of resolving lipid isomers in diseases is highlighted.


Subject(s)
Ozone , Isomerism , Lipids/analysis , Mass Spectrometry/methods , Ozone/chemistry , Ultraviolet Rays
7.
Anal Chem ; 93(27): 9445-9453, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34191481

ABSTRACT

A novel approach for the analysis of volatile organic compounds (VOCs) based on chemical ionization by Au+ ions has been proposed. The ionization is carried out in a commercially available dual sub-atmospheric pressure MALDI/ESI interface without any modifications. The Au+ ions are generated by laser ablation of a gold nanolayer with the MALDI laser, and VOCs are infused via the ESI capillary. The ultrahigh resolving power and sub-ppm mass accuracy of the employed mass spectrometer allow straightforward identification of the formed ion-molecule complexes and other products of Au+ interactions with VOCs in the gas phase. The performance of the technique is demonstrated on the analysis of various classes of organic molecules, namely, alkanes, alkenes, alcohols, aldehydes, ketones, aromatic compounds, carboxylic acids, ethers, or organosulfur compounds, expanding the portfolio of currently available methods for the analysis of VOCs such as secondary electrospray ionization, proton-transfer reaction, and selected ion flow tube mass spectrometry.


Subject(s)
Volatile Organic Compounds , Atmospheric Pressure , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Sulfur Compounds
8.
Anal Chem ; 92(9): 6245-6250, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32286046

ABSTRACT

Visualizing the differential distribution of carbon-carbon double bond (C═C db) positional isomers of unsaturated phospholipids (PL) in tissue sections by use of refined matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) technologies offers a high promise to deeper understand PL metabolism and isomer-specific functions in health and disease. Here we introduce an on-tissue ozonization protocol that enables a particular straightforward derivatization of unsaturated lipids in tissue sections. Collision-induced dissociation (CID) of MALDI-generated ozonide ions (with yields in the several ten percent range) produced the Criegee fragment ion pairs, which are indicative of C═C db position(s). We used our technique for visualizing the differential distribution of Δ9 and Δ11 isomers of phosphatidylcholines in mouse brain and in human colon samples with the desorption laser spot size 15 µm, emphasizing the potential of the technique to expose local isomer-specific metabolism of PLs.


Subject(s)
Ozone/chemistry , Phospholipids/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Brain/diagnostic imaging , Brain/metabolism , Carbon/chemistry , Colon/diagnostic imaging , Colon/metabolism , Humans , Ions/chemistry , Isomerism , Mice , Phospholipids/metabolism
9.
J Am Soc Mass Spectrom ; 30(2): 289-298, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30456596

ABSTRACT

The practicality of matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) applied to molecular imaging of biological tissues is limited by the analysis speed. Typically, a relatively low speed of stop-and-go micromotion of XY stages is considered as a factor substantially reducing the rate with which fresh sample material can be supplied to the laser spot. The sample scan rate in our laboratory-built high-throughput imaging TOF mass spectrometer was significantly improved through the use of a galvanometer-based optical scanner performing fast laser spot repositioning on a target plate. The optical system incorporated into the ion source of our MALDI TOF mass spectrometer allowed focusing the laser beam via a modified grid into a 10-µm round spot. This permitted the acquisition of high-resolution MS images with a well-defined pixel size at acquisition rates exceeding 100 pixel/s. The influence of selected parameters on the total MS imaging time is discussed. The new scanning technique was employed to display the distribution of an antitumor agent in 3D colorectal adenocarcinoma cell aggregates; a single MS image comprising 100 × 100 pixels with 10-µm lateral resolution was recorded in approximately 70 s. Graphical Abstract.


Subject(s)
Image Processing, Computer-Assisted/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Electrodes , Equipment Design , HT29 Cells , Humans , Lasers , Spheroids, Cellular/chemistry
10.
Angew Chem Int Ed Engl ; 57(37): 12092-12096, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30025193

ABSTRACT

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) visualizes the distribution of phospho- and glycolipids in tissue sections. However, C=C double-bond (db) positional isomers generally cannot be distinguished. Now an on-tissue Paternò-Büchi (PB) derivatization procedure that exploits benzaldehyde as a MALDI-MSI-compatible reagent is introduced. Laser-induced postionization (MALDI-2) was used to boost the yields of protonated PB products. Collision-induced dissociation of these species generated characteristic ion pairs, indicative of C=C position, for numerous singly and polyunsaturated phospholipids and glycosphingolipids in mouse brain tissue. Several db-positional isomers of phosphatidylcholine and phosphatidylserine species were expressed with highly differential levels in the white and gray matter areas of cerebellum. Our PB-MALDI-MS/MS procedure could help to better understand the physiological role of these db-positional isomers.


Subject(s)
Carbon/chemistry , Glycolipids/chemistry , Phospholipids/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Benzaldehydes/chemistry , Brain/metabolism , Mice , Swine
11.
J Chromatogr A ; 1533: 199-207, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29248347

ABSTRACT

In this work we present a simple and cost-effective approach for the determination of selenium species in algae and yeast biomass, based on a combination of thin-layer chromatography (TLC) with diode laser thermal vaporization inductively coupled plasma mass spectrometry (DLTV ICP MS). Extraction of freeze-dried biomass was performed in 4M methanesulphonic acid and the selenium species were vaporized from cellulose TLC plates employing a continuous-wave infrared diode laser with power up to 4 W using a simple laboratory-built apparatus. Selenomethionine and selenocysteine were quantified with limits of detection 3 µg L-1 in a Se-enriched microalgae Chlorella vulgaris and yeast certified reference material SELM-1. Results delivered by TLC-DLTV ICP MS were consistent with those obtained by a routine coupling of high-performance liquid chromatography (HPLC) to ICP MS. In addition, the TLC approach is capable of analyzing extract containing even undiluted crude hydrolysates that could damage HPLC columns.


Subject(s)
Chemistry Techniques, Analytical/methods , Chlorella vulgaris/chemistry , Chromatography, Thin Layer , Mass Spectrometry , Saccharomyces cerevisiae/chemistry , Selenocysteine/analysis , Selenomethionine/analysis , Chemistry Techniques, Analytical/economics , Chromatography, High Pressure Liquid , Lasers, Semiconductor , Mass Spectrometry/instrumentation , Spectrum Analysis , Volatilization
12.
J Chromatogr A ; 1364: 271-5, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25193171

ABSTRACT

Here we present a novel coupling of thin-layer chromatography (TLC) to diode laser thermal vaporization inductively coupled plasma mass spectrometry (DLTV ICP MS). DLTV is a new technique of aerosol generation which uses a diode laser to induce pyrolysis of a substrate. In this case the cellulose stationary phase on aluminum-backed TLC sheets overprinted with black ink to absorb laser light. The experimental arrangement relies on economic instrumentation: an 808-nm 1.2-W continuous-wave infrared diode laser attached to a syringe pump serving as the movable stage. Using a glass tubular cell, the entire length of a TLC separation channel is scanned. The 8-cm long lanes were scanned in ∼35 s. The TLC - DLTV ICP MS coupling is demonstrated on the separation of four cobalamins (hydroxo-; adenosyl-; cyano-; and methylcobalamin) with limits of detection ∼2 pg and repeatability ∼15% for each individual species.


Subject(s)
Chromatography, Thin Layer/methods , Lasers, Semiconductor , Mass Spectrometry/methods , Dietary Supplements , Limit of Detection , Mass Spectrometry/instrumentation , Vitamin B 12/isolation & purification , Vitamins/isolation & purification , Volatilization
13.
Anal Chem ; 86(2): 982-6, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24364764

ABSTRACT

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) imaging of surfaces and tissues is a rapidly evolving technique having great potential in the field of biosciences. In earlier times, acquisition of a single high-resolution MS image could take days. Despite the recent introduction of high-repetition rate lasers to increase sample throughput of axial TOF MS instruments, obtaining a high-resolution image still requires a few hours. This paper shows that a substantial increase in the throughput of the TOF MS-based tissue imaging can be achieved by incorporating a mirror providing high-speed precision scanning of the laser beam along the sample surface. Equipped with the scanning mirror, a laboratory-built axial MALDI TOF MS instrument utilizing a 4-kHz UV laser recorded a 100 × 100 pixel MS image in ~11 min using 100 laser shots per pixel. This is almost an order of magnitude faster when compared to a modern commercial instrument equipped with 1-kHz laser.


Subject(s)
Image Processing, Computer-Assisted , Peptides/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Adrenocorticotropic Hormone/analysis , Equipment Design , Gentisates/chemistry , Humans , Lasers , Light , Peptides/chemical synthesis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...