Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38541472

ABSTRACT

Herein, we report the thermal transitions and structural properties of poly(3,4-ethylenedioxythiophene/cucurbit[7]uril) pseudopolyrotaxane (PEDOT∙CB7-PS) and polyrotaxane (PEDOT∙CB7-PR) thin films compared with those of pristine PEDOT. The structural characteristics were investigated by using variable-temperature spectroscopic ellipsometry (VTSE), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and atomic force microscopy (AFM). VTSE and DSC results indicated the presence of an endothermic process and glass transition in the PEDOT∙CB7-PS and PEDOT∙CB7-PR thin films. X-ray diffraction of PEDOT∙CB7-PS and PEDOT∙CB7-PR powders displayed the presence of interchain π-π stacking revealing a characteristic arrangement of aromatic rings in the internal structure of the crystallites. AFM imaging of PEDOT∙CB7-PS and PEDOT∙CB7-PR thin films exhibited significant differences in the surface topographies compared with those of PEDOT. A high degree of crystallization was clearly visible on the surface of the PEDOT layer, whereas the PEDOT∙CB7-PS and PEDOT∙CB7-PR thin films exhibited more favorable surface parameters. Such significant differences identified in the surface morphology of the investigated layers can, therefore, be clearly associated with the presence of surrounding CB7 on PEDOT skeletons.

2.
Nanomaterials (Basel) ; 13(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37999272

ABSTRACT

The thermal properties and alignment of crystallinity of materials in thin films play crucial roles in the performance and reliability of various devices, especially in the fields of electronics, materials science, and engineering. The slight variations in the molecular packing of the active layer can make considerable differences in the optical and thermal properties. Herein, we aim to investigate the tuning of the physical properties of a blended thin film of n-type small organic molecules of perylene-3,4,9,10-tetracarboxylic acid (PTCA-SMs) with the mixing of the p-type polymer poly(3-hexylthiophene) (P3HT). The resulting thin films exhibit an enhanced surface crystallinity compared to the pristine material, leading to the formation of long crystallites, and these crystallites are thermally stable in the solid state, as confirmed by X-ray diffraction (XRD), atomic force microscopy (AFM), and thermal analysis using variable-temperature spectroscopic ellipsometry (VTSE) and differential scanning calorimetry (DSC). We believe that the crystalline structure of the obtained P3HT/PTCA-SMs blends is a combination of edge-on and face-on orientations, which enable the potential use of this material as an active layer in organic electronics.

3.
Polymers (Basel) ; 15(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37765605

ABSTRACT

Two combined ellipsometric techniques-variable angle spectroscopic ellipsometry (VASE) and variable temperature spectroscopic ellipsometry (VTSE)-were used as tools to study the surface order and dielectric properties of thin films of a poly(3-hexylthiophene-2,5-diyl) (P3HT) mixture with a fullerene derivative (6,6-phenyl-C71-butyric acid methyl ester) (PC70BM). Under the influence of annealing, a layer of the ordered PC70BM phase was formed on the surface of the blend films. The dielectric function of the ordered PC70BM was determined for the first time and used in the ellipsometric modeling of the physical properties of the P3HT:PC70BM blend films, such as their dielectric function and thickness. The applied ellipsometric optical model of the polymer-fullerene blend treats the components of the blend as a mixture of optically ordered and disordered phases, using the effective medium approximation for this purpose. The results obtained using the constructed model showed that a layer of the ordered PC70BM phase was formed on the surface of the layer of the polymer and fullerene mixture. Namely, as a result of thermal annealing, the thickness of the layer of the ordered fullerene phase increased, while the thickness of the underlying material layer decreased.

4.
Sci Rep ; 12(1): 20849, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36460823

ABSTRACT

Phase diagrams of ternary π-bonded polymer (PTB7-Th) solutions were constructed as a function of molecular weight, temperature, and electron acceptor species (ITIC, PC61BM and PC71BM). For this purpose, the Flory-Huggins lattice theory was employed with a constant χ interaction parameter, describing a binodal, spinodal, tie line, and critical point. Then, the morphologies of the blends composed of highly disordered PTB7-Th and crystallizable ITIC were investigated by atomic force microscopy. Subsequently, the surface polarities of the PTB7-Th:ITIC thin films were examined by water contact-angle goniometer, exhibiting a transition at the composition of ~ 60 ± 10 wt.% ITIC. Furthermore, X-ray diffraction indicated the presence of ITIC's crystallites at ≥ 70 wt.% ITIC. Hence, the PTB7-Th:ITIC system was observed to undergo a phase transition at ~ 60-70 wt.% ITIC.

5.
Materials (Basel) ; 15(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499890

ABSTRACT

This work focuses on the study of thermal and physical properties of thin polymer films based on mixtures of semiconductor polymers. The materials selected for research were poly [2,5-bis(2-octyldodecyl)-pyrrolo [3,4-c]pyrrole-1,4(2H,5H)-dione-3,6-diyl)-alt-(2,2';5',2″;5″,2'''-quater-thiophen-5,5'''-diyl)]-PDPP4T, a p-type semiconducting polymer, and poly(2,5-bis(2-octyldodecyl)-3,6-di(pyridin-2-yl)-pyrrolo [3,4-c]pyrrole-1,4(2H,5H)-dione-alt-2,2'-bithiophene)-PDBPyBT, a high-mobility n-type polymer. The article describes the influence of the mutual participation of materials on the structure, physical properties and thermal transitions of PDPP4T:PDBPyBT blends. Here, for the first time, we demonstrate the phase diagram for PDPP4T:PDBPyBT blend films, constructed on the basis of variable-temperature spectroscopic ellipsometry and differential scanning calorimetry. Both techniques are complementary to each other, and the obtained results overlap to a large extent. Our research shows that these polymers can be mixed in various proportions to form single-phase mixtures with several thermal transitions, three of which with the lowest characteristic temperatures can be identified as glass transitions. In addition, the RMS roughness value of the PDPP4T:PDBPyBT blended films was lower than that of the pure materials.

6.
Polymers (Basel) ; 12(7)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32629756

ABSTRACT

In this paper, we present research on thermal transition temperature determination in poly (3-hexylthiophene-2,5-diyl) (P3HT), [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM), and their blends, which are materials that are conventionally used in organic optoelectronics. Here, for the first time the results of electrical resistance measurements are explored to detect thermal transitions temperatures, such as glass transition Tg and cold crystallization Tcc of the film. To confirm these results, the variable-temperature spectroscopic ellipsometry studies of the same samples were performed. The thermal transitions temperatures obtained with electrical measurements are well suited to phase diagram, constructed on the basis of ellipsometry in our previous work. The data presented here prove that electrical resistance measurements alone are sufficient for qualitative thermal analysis, which lead to the identification of characteristic temperatures in P3HT:PC60BM films. Based on the carried studies, it can be expected that the determination of thermal transition temperatures by means of electrical resistance measurements will also apply to other semi-conducting polymer films.

7.
J Phys Chem B ; 124(16): 3229-3251, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32275433

ABSTRACT

Thin polymer films have found many important applications in organic electronics, such as active layers, protective layers, or antistatic layers. Among the various experimental methods suitable for studying the thermo-optical properties of thin polymer films, temperature-dependent spectroscopic ellipsometry plays a special role as a nondestructive and very sensitive optical technique. In this Review Article, issues related to the physical origin of the dependence of ellipsometric angles on temperature are surveyed. In addition, the Review Article discusses the use of temperature-dependent spectroscopic ellipsometry for studying phase transitions in thin polymer films. The benefits of studying thermal transitions using different cooling/heating speeds are also discussed. Furthermore, it is shown how the analysis and modeling of raw ellipsometric data can be used to determine the thermal properties of thin polymer films.

8.
Beilstein J Nanotechnol ; 9: 1108-1115, 2018.
Article in English | MEDLINE | ID: mdl-29719761

ABSTRACT

In this work we present an in-depth study of the how the composition of poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend films influences their phase transitions using variable-temperature spectroscopic ellipsometry. We demonstrate that this non-destructive method is a very sensitive optical technique to investigate the phase transitions and to determine the glass transition temperatures and melting crystallization points of the P3HT:PCBM blend films. By analyzing the influence of the temperature T on the raw ellipsometric data, we have identified a high sensitivity of the ellipsometric angle Δ at a wavelength of 280 nm to temperature changes. Characteristic temperatures determined from the slope changes of the Δ(T) plot appeared to be very good guess values for the phase transition temperatures.

9.
J Phys Condens Matter ; 24(23): 235801, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22576128

ABSTRACT

We formulate a complete microscopic theory of a coupled pair of bound magnetic polarons, the bound-magnetic-polaron molecule (BMPM) in a diluted magnetic semiconductor by taking into account both the proper two-body nature of the impurity-electron wavefunction and within the general spin-rotation-invariant approach to the electronic states. Also, the model takes into account both the Heisenberg and the antiferromagnetic kinetic-exchange interactions, as well as the ferromagnetic coupling within the common spin BMPM cloud. In this manner, we correct, unify and extend the weakly interacting BMP pair models of Wolff-Bhatt-Durst (2002 Phys. Rev. B 65 235205) and the model of nonoverlapping polarons considered by Angelescu and Bhatt (2002 Phys. Rev. B 65 75211). The resulting BMPM Hamiltonian is solved within the continuum-medium and the effective-mass approximations for the donor case and the thermodynamics is derived. In our approach the thermodynamic fluctuations of magnetization of the spins within BMPM are taken as Gaussian. It appears that the fluctuations can strongly stabilize the spin-triplet state, which may constitute a precursor effect of a ferromagnetic ordering in a many-impurity system.

10.
J Chem Phys ; 131(2): 024901, 2009 Jul 14.
Article in English | MEDLINE | ID: mdl-19604008

ABSTRACT

Poly(1,4-phenylene-methylidynenitrilo-1,4-phenylenenitrilomethylidyne) (PPI) backbone approximated with poly(p-phenylene vinylene)like polymer composed of alternate phenylene and vinylenelike units is treated within pi electron approximation in terms of the chain composed of united atoms built up of virtual benzene and ethylene atoms. Electronic structure of the united atom is derived from interactions of benzene p and beta bands with V band of ethylene, taking into account that continuity of their pi systems results from overlap of vinylenelike highest occupied molecular orbital and lowest unoccupied molecular orbital orbitals with relevant components of benzene molecular orbitals having phase at parapositions. Electronic band structure has been derived within pi-electron approximation in a way resembling tight binding approximation usually applied to semiconductors. The proposed model is suitable to interpret UV-visible spectra of PPI with additional explaining vibronic progressions. Additionally, an expected location of lone pair related level is proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...