Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Opt Lett ; 48(23): 6084-6087, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38039197

ABSTRACT

We present a simple and efficient method for generating regular pulse trains with GHz pulse repetition rates in lasers based on semiconductor optical amplifiers (SOAs). This method enables pulse formation without active modulation or saturable absorption of the generated radiation. The method relies upon the self-sustaining cross-gain modulation which is achieved by adding the negative optical feedback (NOF) to a ring laser configuration. The resulting modulation of laser gain is shown to be restricted to the frequencies which match both the spacing of longitudinal laser modes and the highest peaks in the NOF-induced instability gain spectrum. This enables the reproducible stationary pulse generation at the strictly defined repetition rates. The feasibility of the method was confirmed by the stable generation of sub-nanosecond pulses at repetition rates up to 1.79 GHz in a SOA-based laser with a simple fiber cavity.

2.
Sci Rep ; 12(1): 13799, 2022 Aug 13.
Article in English | MEDLINE | ID: mdl-35963874

ABSTRACT

We examine spectral properties of radiation in the pulsed fiber lasers using the semiconductor optical amplifier (SOA) as the gain medium. The complex light dynamics that result from the interplay between the fiber propagation effects in the cavity, the nonlinear effects in the SOA and spectral filtering, shift the generated radiation from the central wavelength of the filter. The resulting wavelength of the output radiation depends on the SOA pump power and the bandwidth of the intracavity filter. This offers the possibility of a spectral tunability of the generated pulses through nonlinear dynamics rather than the conventional use of a tunable filter.

3.
Sci Rep ; 11(1): 13555, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34193928

ABSTRACT

A wide variety of laser applications, that often require radiation with specific characteristics, and relative flexibility of laser configurations offer a prospect of designing systems with the parameters on demand. The inverse laser design problem is to find the system architecture that provides for the generation of the desired laser output. However, typically, such inverse problems for nonlinear systems are sensitive to the computation of the gradients of a target (fitness) function making direct back propagation approach challenging. We apply here particle swarm optimization algorithm that does not rely on the gradients of the fitness function to the design of a fiber 8-figure laser cavity. This technique allows us to determine the laser cavity architectures tailored to generating on demand pulses with duration in the range of 1.5-105 ps and spectral width in the interval 0.1-20.5 nm. The proposed design optimisation algorithm can be applied to a variety of laser applications, and, more generally, in a range of engineering systems with flexible adjustable configurations and the outputs on demand.

4.
Opt Lett ; 44(13): 3410-3413, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31259973

ABSTRACT

By combining machine learning methods and the dispersive Fourier transform we demonstrate, to the best of our knowledge, for the first time the possibility to determine the temporal duration of picosecond-scale laser pulses using a nanosecond photodetector. A fiber figure of eight lasers with two amplifiers in a resonator was used to generate pulses with durations varying from 28 to 160 ps and spectral widths varied in the range of 0.75-12 nm. The average power of the pulses was in the range from 40 to 300 mW. The trained artificial neural network makes it possible to predict the pulse duration with the mean agreement of 95%. The proposed technique paves the way to creating compact and low-cost feedback for complex laser systems.

5.
Opt Express ; 26(12): 15503-15518, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-30114810

ABSTRACT

In this work we applied a Hamiltonian formalism to simplify the equations of non-degenerate nonlinear four-wave mixing to the one-degree-of-freedom Hamiltonian equations with a three-parameter Hamiltonian. Thereby, a problem of signal amplification in a phase-sensitive double-pumped parametric fiber amplifier with pump depletion was reduced to a geometrical study of the phase portraits of the one-degree-of-freedom Hamiltonian system. For a symmetric case of equal pump powers and equal signal and idler powers at the fiber input, it has been shown that the theoretical maximum gain occurs on the extremal trajectories. However, to reduce the nonlinear interaction of waves, we proposed to choose the separatrix as the optimal trajectory on the phase plane. Analytical expressions were found for the maximum amplification, as well as the length of optical fiber and the relative phase of interacting waves allowing this amplification. Using the proposed approach, we optimized of the phase-sensitive parametric amplifier. As a result, the optimal parameters of the phase-sensitive amplifier were found and the maximum possible signal amplification was realized in a broad range of signal wavelengths.

6.
Opt Lett ; 42(16): 3221-3224, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28809913

ABSTRACT

A high-energy (0.93 nJ) all-fiber erbium femtosecond oscillator operating in the telecom spectral range is proposed and realized. The laser cavity, built of commercially available fibers and components, combines polarization maintaining (PM) and non-PM parts providing stable generation of highly chirped (chirp parameter 40) pulses compressed in an output piece of standard PM fiber to 165 fs. The results of the numerical simulation agree well with the experiment. The analyzed intracavity pulse dynamics enables the classification of the generated pulses as dissipative solitons.

7.
Sci Rep ; 7(1): 2905, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28588302

ABSTRACT

Dissipative solitons generated in normal-dispersion mode-locked lasers are stable localized coherent structures with a mostly linear frequency modulation (chirp). The soliton energy in fiber lasers is limited by the Raman effect, but implementation of the intracavity feedback at the Stokes-shifted wavelength enables synchronous generation of a coherent Raman dissipative soliton. Here we demonstrate a new approach for generating chirped pulses at new wavelengths by mixing in a highly-nonlinear fiber of these two frequency-shifted dissipative solitons, as well as cascaded generation of their clones forming in the spectral domain a comb of highly chirped pulses. We observed up to eight equidistant components in the interval of more than 300 nm, which demonstrate compressibility from ~10 ps to ~300 fs. This approach, being different from traditional frequency combs, can inspire new developments in fundamental science and applications such as few-cycle/arbitrary-waveform pulse synthesis, comb spectroscopy, coherent communications and bio-imaging.

8.
Sci Rep ; 7: 44314, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28287159

ABSTRACT

The complex nonlinear dynamics of mode-locked fibre lasers, including a broad variety of dissipative structures and self-organization effects, have drawn significant research interest. Around the 2 µm band, conventional saturable absorbers (SAs) possess small modulation depth and slow relaxation time and, therefore, are incapable of ensuring complex inter-pulse dynamics and bound-state soliton generation. We present observation of multi-soliton complex generation in mode-locked thulium (Tm)-doped fibre laser, using double-wall carbon nanotubes (DWNT-SA) and nonlinear polarisation evolution (NPE). The rigid structure of DWNTs ensures high modulation depth (64%), fast relaxation (1.25 ps) and high thermal damage threshold. This enables formation of 560-fs soliton pulses; two-soliton bound-state with 560 fs pulse duration and 1.37 ps separation; and singlet+doublet soliton structures with 1.8 ps duration and 6 ps separation. Numerical simulations based on the vectorial nonlinear Schr¨odinger equation demonstrate a transition from single-pulse to two-soliton bound-states generation. The results imply that DWNTs are an excellent SA for the formation of steady single- and multi-soliton structures around 2 µm region, which could not be supported by single-wall carbon nanotubes (SWNTs). The combination of the potential bandwidth resource around 2 µm with the soliton molecule concept for encoding two bits of data per clock period opens exciting opportunities for data-carrying capacity enhancement.

9.
Opt Lett ; 41(1): 175-8, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26696187

ABSTRACT

The cascaded generation of a conventional dissipative soliton (at 1020 nm) together with Raman dissipative solitons of the first (1065 nm) and second (1115 nm) orders inside a common fiber laser cavity is demonstrated experimentally and numerically. With sinusoidal (soft) spectral filtering, the generated solitons are mutually coherent at a high degree and compressible down to 300 fs. Numerical simulation shows that an even higher degree of coherence and shorter pulses could be achieved with step-like (hard) spectral filtering. The approach can be extended toward a high-order coherent Raman dissipative soliton source offering numerous applications such as frequency comb generation, pulse synthesis, biomedical imaging, and the generation of a coherent mid-infrared supercontinuum.

10.
Nat Photonics ; 9(9): 608-614, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26345290

ABSTRACT

An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics.

11.
Phys Rev Lett ; 114(11): 113901, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25839271

ABSTRACT

The key to generating stable optical pulses is mastery of nonlinear light dynamics in laser resonators. Modern techniques to control the buildup of laser pulses are based on nonlinear science and include classical solitons, dissipative solitons, parabolic pulses (similaritons) and various modifications and blending of these methods. Fiber lasers offer remarkable opportunities to apply one-dimensional nonlinear science models for the design and optimization of very practical laser systems. Here, we propose a new concept of a laser based on the adiabatic amplification of a soliton pulse in the cavity-the adiabatic soliton laser. The adiabatic change of the soliton parameters during evolution in the resonator relaxes the restriction on the pulse energy inherent in traditional soliton lasers. Theoretical analysis is confirmed by extensive numerical modeling.

12.
Opt Express ; 23(2): 1857-62, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25835939

ABSTRACT

Energy of chirped dissipative solitons (DS) generated in fiber lasers may exceed a threshold of stimulated Raman scattering (SRS) leading to formation of a noisy Raman pulse (RP). As we demonstrated recently, a feedback loop providing re-injection of the Raman pulse into the laser cavity can form a Raman dissipative soliton (RDS) with similar characteristics to those of the main dissipative soliton. Here, we present the results of feedback optimization of the generated RDS spectra. First experimental results of coherent combining of DS and RDS are also shown.

13.
Nat Commun ; 5: 4653, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25116003

ABSTRACT

The dissipative soliton regime is one of the most advanced ways to generate high-energy femtosecond pulses in mode-locked lasers. On the other hand, the stimulated Raman scattering in a fibre laser may convert the excess energy out of the coherent dissipative soliton to a noisy Raman pulse, thus limiting its energy. Here we demonstrate that intracavity feedback provided by re-injection of a Raman pulse into the laser cavity leads to formation of a coherent Raman dissipative soliton. Together, a dissipative soliton and a Raman dissipative soliton (of the first and second orders) form a two (three)-colour stable complex with higher total energy and broader spectrum than those of the dissipative soliton alone. Numerous applications can benefit from this approach, including frequency comb spectroscopy, transmission lines, seeding femtosecond parametric amplifiers, enhancement cavities and multiphoton fluorescence microscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...