Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38541471

ABSTRACT

The mechanical analysis of photovoltaics and building integrated photovoltaics is a key step for their optimal design and certification, and requires careful consideration, alongside solar power, durability and functionality issues. The solar cells are encapsulated in thin interlayers that are usually composed of a viscoelastic Ethylene-Vinyl Acetate compound, and protected by thin glass and/or plastic layers. This paper investigates the out-of-plane bending response of a full-scale commercial PV module and focuses attention on the shear bonding efficiency of the thin encapsulant for quasi-static and dynamic mechanical considerations. The parametric analytical analysis, carried out in this study for a laminated glass plate, highlights the possible consequences of the viscoelastic shear coupling on the cross-section load-bearing demand in the covers. As a direct effect of severe operational conditions (i.e., ageing, non-uniform/cyclic thermal gradients, humidity, extreme mechanical/thermal loads, etc.) the shear rigidity and adhesion of these films can suffer from repeated/progressive modification and even degradation, and thus induce major stress and deflection effects in the out-of-plane mechanical response of the PV module components. The minimum shear bond efficiency required to prevent mechanical issues is calculated for various configurations of technical interest. Accordingly, it is shown how the quasi-static and dynamic mechanical performance of the system modifies as a function of a more rigid or weak shear coupling.

2.
Materials (Basel) ; 14(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34683782

ABSTRACT

The aim of this article is to predict the compressive strength of environmentally friendly concrete modified with eggshell powder. For this purpose, an optimized artificial neural network, combined with a novel metaheuristic shuffled frog leaping optimization algorithm, was employed and compared with a well-known genetic algorithm and multiple linear regression. The presented results confirm that the highest compressive strength (46 MPa on average) can be achieved for mix designs containing 7 to 9% of eggshell powder. This means that the strength increased by 55% when compared to conventional Portland cement-based concrete. The comparative results also show that the proposed artificial neural network, combined with the novel metaheuristic shuffled frog leaping optimization algorithm, offers satisfactory results of compressive strength predictions for concrete modified using eggshell powder concrete. Moreover, it has a higher accuracy than the genetic algorithm and the multiple linear regression. This finding makes the present method useful for construction practice because it enables a concrete mix with a specific compressive strength to be developed based on industrial waste that is locally available.

3.
Materials (Basel) ; 13(11)2020 May 29.
Article in English | MEDLINE | ID: mdl-32486071

ABSTRACT

Structural glass beams and fins are largely used in buildings, in the form of primary load-bearing members and bracing systems for roof or facade panels. Several loading and boundary conditions can be efficiently solved by means of bonded composites that involve the use of laminated glass sections. Additionally, the so-obtained glass members are often characterized by high slenderness. To this aim, several literature studies were dedicated to the lateral-torsional buckling (LTB) behavior of laterally unrestrained (LU) glass elements, with the support of full-scale experiments, analytical models, or finite element (FE) numerical investigations. Standardized design recommendations for LU glass members in LTB are available for designers. However, several design issues still require "ad hoc" (and often expensive) calculation studies. In most of the cases, for example, the mechanical interaction between the structural components to verify involves various typologies of joints, including continuous sealant connections, mechanical point fixings, or hybrid solutions. As a result, an accurate estimation of the theoretical LTB critical moment for such a kind of laterally restrained (LR) element represents a first key issue toward the definition and calibration of generalized design recommendations. Careful consideration should be spent for the description of the intrinsic features of materials in use, as well as for a combination of geometrical and mechanical aspects (i.e., geometry, number, position of restraints, etc.). In this paper, the attention is focused on the calculation of the elastic critical buckling moment of LR glass beams in LTB. Existing analytical approaches of the literature (mostly developed for steel constructional members) are briefly recalled. An additional advantage for extended parametric calculations is then taken from finite element (FE) numerical analyses, which are performed via the LTBeam or the ABAQUS software codes. The actual role and the effect of discrete mechanical restraints are, thus, explored for selected configurations of practical interest. Finally, the reliability of simplified calculation approaches is assessed.

4.
Materials (Basel) ; 11(8)2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30115824

ABSTRACT

Glass is largely used in architectural and engineering applications (i.e., buildings and vehicles) as a structural material, especially in the form of laminated glass (LG) sections. To achieve adequate and controlled safety levels in these applications, the well-known temperature-dependent behavior of viscoelastic interlayers for LG sections should be properly accounted for during the design process. Furthermore, the materials' thermomechanical degradation with increases of temperature could severely affect the load-bearing performance of glass assemblies. In this context, uncoupled thermomechanical finite element (FE) numerical models could represent a robust tool and support for design engineers. Key input parameters and possible limits of the FE method, however, should be properly calibrated and assessed, so as to enable reliable estimations for the real behavior of glazing systems. In this paper, FE simulations are proposed for monolithic (MG) and LG specimens under radiant heating, based on one-dimensional (1D) and two-dimensional (2D) models. A special attention is focused on thermal effects, being representative of the first step for conventional uncoupled, thermomechanical analyses. Based on experimental results available in the literature, FE parametric studies are discussed, giving evidence of limits and issues due to several modeling assumptions. In particular, careful consideration is paid for various thermal material properties (conductivity, specific heat) and thermal boundaries (conductivity, emissivity), but also for other influencing parameters like the geometrical features of samples (thickness tolerances, cross-sectional properties, etc.), the composition of LG sections (interlayer type, thickness), the loading pattern (heat transfer distribution) and the presence of additional mechanical restraints (i.e., supports of different materials). Comparative FE results are hence critically discussed, highlighting the major effects of such influencing parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...