Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 88(15): e0088322, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35862682

ABSTRACT

The regulated uptake and consumption of d-amino acids by bacteria remain largely unexplored, despite the physiological importance of these compounds. Unlike other characterized bacteria, such as Escherichia coli, which utilizes only l-Asp, Acinetobacter baylyi ADP1 can consume both d-Asp and l-Asp as the sole carbon or nitrogen source. As described here, two LysR-type transcriptional regulators (LTTRs), DarR and AalR, control d- and l-Asp metabolism in strain ADP1. Heterologous expression of A. baylyi proteins enabled E. coli to use d-Asp as the carbon source when either of two transporters (AspT or AspY) and a racemase (RacD) were coexpressed. A third transporter, designated AspS, was also discovered to transport Asp in ADP1. DarR and/or AalR controlled the transcription of aspT, aspY, racD, and aspA (which encodes aspartate ammonia lyase). Conserved residues in the N-terminal DNA-binding domains of both regulators likely enable them to recognize the same DNA consensus sequence (ATGC-N7-GCAT) in several operator-promoter regions. In strains lacking AalR, suppressor mutations revealed a role for the ClpAP protease in Asp metabolism. In the absence of the ClpA component of this protease, DarR can compensate for the loss of AalR. ADP1 consumed l- and d-Asn and l-Glu, but not d-Glu, as the sole carbon or nitrogen source using interrelated pathways. IMPORTANCE A regulatory scheme was revealed in which AalR responds to l-Asp and DarR responds to d-Asp, a molecule with critical signaling functions in many organisms. The RacD-mediated interconversion of these isomers causes overlap in transcriptional control in A. baylyi. Our studies improve understanding of transport and regulation and lay the foundation for determining how regulators distinguish l- and d-enantiomers. These studies are relevant for biotechnology applications, and they highlight the importance of d-amino acids as natural bacterial growth substrates.


Subject(s)
Acinetobacter , Gene Expression Regulation, Bacterial , Acinetobacter/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon/metabolism , D-Aspartic Acid/genetics , D-Aspartic Acid/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Membrane Transport Proteins/genetics , Nitrogen/metabolism , Peptide Hydrolases/metabolism
2.
Appl Environ Microbiol ; 88(2): e0178021, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34788063

ABSTRACT

Adaptive laboratory evolution (ALE) is a powerful approach for improving phenotypes of microbial hosts. Evolved strains typically contain numerous mutations that can be revealed by whole-genome sequencing. However, determining the contribution of specific mutations to new phenotypes is typically challenging and laborious. This task is complicated by factors such as the mutation type, the genomic context, and the interplay between different mutations. Here, a novel approach was developed to identify the significance of mutations in strains evolved from Acinetobacter baylyi ADP1. This method, termed rapid advantageous mutation screening and selection (RAMSES), was used to analyze mutants that emerged from stepwise adaptation to and consumption of high levels of ferulate, a common lignin-derived aromatic compound. After whole-genome sequence analysis, RAMSES allowed rapid determination of effective mutations and seamless introduction of the beneficial mutations into the chromosomes of new strains with different genetic backgrounds. This simple approach to reverse engineering exploits the natural competence and high recombination efficiency of ADP1. Mutated DNA, added directly to growing cells, replaces homologous chromosomal regions to generate transformants that will become enriched if there is a selective benefit. Thus, advantageous mutations can be rapidly identified. Here, the growth advantage of transformants under selective pressure revealed key mutations in genes related to aromatic transport, including hcaE, hcaK, and vanK, and a gene, ACIAD0482, which is associated with lipopolysaccharide synthesis. This study provided insights into the enhanced utilization of industrially relevant aromatic substrates and demonstrated the use of A. baylyi ADP1 as a convenient platform for strain development and evolution studies. IMPORTANCE Microbial conversion of lignin-enriched streams is a promising approach for lignin valorization. However, the lignin-derived aromatic compounds are toxic to cells at relevant concentrations. Although adaptive laboratory evolution (ALE) is a powerful approach to develop more tolerant strains, it is typically laborious to identify the mechanisms underlying phenotypic improvement. We employed Acinetobacter baylyi ADP1, an aromatic-compound-degrading strain that may be useful for biotechnology. The natural competence and high recombination efficiency of this strain can be exploited for critical applications, such as the breakdown of lignin and plastics and abundant polymers composed of aromatic subunits. The natural transformability of this bacterium enabled us to develop a novel approach for rapid screening of advantageous mutations from ALE-derived, aromatic-tolerant, ADP1-derived strains. We clarified the mechanisms and genetic targets for improved tolerance toward common lignin-derived aromatic compounds. This study facilitates metabolic engineering for lignin valorization.


Subject(s)
Acinetobacter , Acinetobacter/metabolism , Lignin/metabolism , Metabolic Engineering , Mutation
3.
Nucleic Acids Res ; 48(9): 5169-5182, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32246719

ABSTRACT

One primary objective of synthetic biology is to improve the sustainability of chemical manufacturing. Naturally occurring biological systems can utilize a variety of carbon sources, including waste streams that pose challenges to traditional chemical processing, such as lignin biomass, providing opportunity for remediation and valorization of these materials. Success, however, depends on identifying micro-organisms that are both metabolically versatile and engineerable. Identifying organisms with this combination of traits has been a historic hindrance. Here, we leverage the facile genetics of the metabolically versatile bacterium Acinetobacter baylyi ADP1 to create easy and rapid molecular cloning workflows, including a Cas9-based single-step marker-less and scar-less genomic integration method. In addition, we create a promoter library, ribosomal binding site (RBS) variants and test an unprecedented number of rationally integrated bacterial chromosomal protein expression sites and variants. At last, we demonstrate the utility of these tools by examining ADP1's catabolic repression regulation, creating a strain with improved potential for lignin bioprocessing. Taken together, this work highlights ADP1 as an ideal host for a variety of sustainability and synthetic biology applications.


Subject(s)
Acinetobacter/genetics , Metabolic Engineering , Acinetobacter/metabolism , Cloning, Molecular/methods , Genome, Bacterial , Genomics , Lignin/metabolism , Promoter Regions, Genetic , Ribosomes/metabolism
4.
Biotechnol Biofuels ; 12: 91, 2019.
Article in English | MEDLINE | ID: mdl-31044004

ABSTRACT

BACKGROUND: Lignocellulosic biomass is an attractive, inexpensive source of potentially fermentable sugars. However, hydrolysis of lignocellulose results in a complex mixture containing microbial inhibitors at variable composition. A single microbial species is unable to detoxify or even tolerate these non-sugar components while converting the sugar mixtures effectively to a product of interest. Often multiple substrates are metabolized sequentially because of microbial regulatory mechanisms. To overcome these problems, we engineered strains of Acinetobacter baylyi ADP1 to comprise a consortium able to degrade benzoate and 4-hydroxybenzoate simultaneously under batch and continuous conditions in the presence of sugars. We furthermore used a thermotolerant yeast, Kluyveromyces marxianus, to convert the glucose remaining after detoxification to ethanol. RESULTS: The two engineered strains, one unable to metabolize benzoate and another unable to metabolize 4-hydroxybenzoate, when grown together removed these two inhibitors simultaneously under batch conditions. Under continuous conditions, a single strain with a deletion in the gcd gene metabolized both inhibitors in the presence of sugars. After this batch detoxification using ADP1-derived mutants, K. marxianus generated 36.6 g/L ethanol. CONCLUSIONS: We demonstrated approaches for the simultaneous removal of two aromatic inhibitors from a simulated lignocellulosic hydrolysate. A two-stage batch process converted the residual sugar into a non-growth-associated product, ethanol. Such a two-stage process with bacteria (A. baylyi) and yeast (K. marxianus) is advantageous, because the yeast fermentation occurs at a higher temperature which prevents growth and ethanol consumption of A. baylyi. Conceptually, the process can be extended to other inhibitors or sugars found in real hydrolysates. That is, additional strains which degrade components of lignocellulosic hydrolysates could be made substrate-selective and targeted for use with specific complex mixtures found in a hydrolysate.

SELECTION OF CITATIONS
SEARCH DETAIL
...