Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 235: 115623, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37542827

ABSTRACT

Nanomaterials and nanotechnology offer promising opportunities in point-of-care (POC) diagnostics and therapeutics due to their unique physical and chemical properties. POC platforms aim to provide rapid and portable diagnostic and therapeutic capabilities at the site of patient care, offering cost-effective solutions. Incorporating nanomaterials with distinct optical, electrical, and magnetic properties can revolutionize the POC industry, significantly enhancing the effectiveness and efficiency of diagnostic and theragnostic devices. By leveraging nanoparticles and nanofibers in POC devices, nanomaterials have the potential to improve the accuracy and speed of diagnostic tests, making them more practical for POC settings. Technological advancements, such as smartphone integration, imagery instruments, and attachments, complement and expand the application scope of POCs, reducing invasiveness by enabling analysis of various matrices like saliva and breath. These integrated testing platforms facilitate procedures without compromising diagnosis quality. This review provides a summary of recent trends in POC technologies utilizing nanomaterials and nanotechnologies for analyzing disease biomarkers. It highlights advances in device development, nanomaterial design, and their applications in POC. Additionally, complementary tools used in POC and nanomaterials are discussed, followed by critical analysis of challenges and future directions for these technologies.


Subject(s)
Nanostructures , Point-of-Care Systems , Humans , Point-of-Care Testing , Nanostructures/chemistry , Nanotechnology/methods , Saliva
2.
ACS Appl Mater Interfaces ; 15(31): 37247-37258, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37499237

ABSTRACT

Recently, illicit drug use has become more widespread and is linked to problems with crime and public health. These drugs disrupt consciousness, affecting perceptions and feelings. Combining stimulants and depressants to suppress the effect of drugs has become the most common reason for drug overdose deaths. On-site platforms for illicit-drug detection have gained an important role in dealing, without any excess equipment, long process, and training, with drug abuse and drug trafficking. Consequently, the development of rapid, sensitive, noninvasive, and reliable multiplex drug-detecting platforms has become a major necessity. In this study, a multiplex laser-scribed graphene (LSG) sensing platform with one counter, one reference, and three working electrodes was developed for rapid and sensitive electrochemical detection of amphetamine (AMP), cocaine (COC), and benzodiazepine (BZD) simultaneously in saliva samples. The multidetection sensing system was combined with a custom-made potentiostat to achieve a complete point-of-care (POC) platform. Smartphone integration was achieved by a customized application to operate, display, and send data. To the best of our knowledge, this is the first multiplex LSG-based electrochemical platform designed for illicit-drug detection with a custom-made potentiostat device to build a complete POC platform. Each working electrode was optimized with standard solutions of AMP, COC, and BZD in the concentration range of 1.0 pg/mL-500 ng/mL. The detection limit of each illicit drug was calculated as 4.3 ng/mL for AMP, 9.7 ng/mL for BZD, and 9.0 ng/mL for COC. Healthy and MET (methamphetamine) patient saliva samples were used for the clinical study. The multiplex LSG sensor was able to detect target analytes in real saliva samples successfully. This multiplex detection device serves the role of a practical and affordable alternative to conventional drug-detection methods by combining multiple drug detections in one portable platform.


Subject(s)
Central Nervous System Stimulants , Cocaine , Illicit Drugs , Methamphetamine , Humans , Point-of-Care Systems , Drug Monitoring
3.
Biosensors (Basel) ; 12(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36004979

ABSTRACT

Many emerging technologies have the potential to improve health care by providing more personalized approaches or early diagnostic methods. In this review, we cover smartphone-based multiplexed sensors as affordable and portable sensing platforms for point-of-care devices. Multiplexing has been gaining attention recently for clinical diagnosis considering certain diseases require analysis of complex biological networks instead of single-marker analysis. Smartphones offer tremendous possibilities for on-site detection analysis due to their portability, high accessibility, fast sample processing, and robust imaging capabilities. Straightforward digital analysis and convenient user interfaces support networked health care systems and individualized health monitoring. Detailed biomarker profiling provides fast and accurate analysis for disease diagnosis for limited sample volume collection. Here, multiplexed smartphone-based assays with optical and electrochemical components are covered. Possible wireless or wired communication actuators and portable and wearable sensing integration for various sensing applications are discussed. The crucial features and the weaknesses of these devices are critically evaluated.


Subject(s)
Biosensing Techniques , Smartphone , Biomarkers/analysis , Biosensing Techniques/methods , Delivery of Health Care , Point-of-Care Systems
4.
Biosens Bioelectron X ; 10: 100105, 2022 May.
Article in English | MEDLINE | ID: mdl-35036904

ABSTRACT

Point of care (PoC) devices are highly demanding to control current pandemic, originated from severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Though nucleic acid-based methods such as RT-PCR are widely available, they require sample preparation and long processing time. PoC diagnostic devices provide relatively faster and stable results. However they require further investigation to provide high accuracy and be adaptable for the new variants. In this study, laser-scribed graphene (LSG) sensors are coupled with gold nanoparticles (AuNPs) as stable promising biosensing platforms. Angiotensin Converting Enzyme 2 (ACE2), an enzymatic receptor, is chosen to be the biorecognition unit due to its high binding affinity towards spike proteins as a key-lock model. The sensor was integrated to a homemade and portable potentistat device, wirelessly connected to a smartphone having a customized application for easy operation. LODs of 5.14 and 2.09 ng/mL was achieved for S1 and S2 protein in the linear range of 1.0-200 ng/mL, respectively. Clinical study has been conducted with nasopharyngeal swabs from 63 patients having alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2) variants, patients without mutation and negative patients. A machine learning model was developed with accuracy of 99.37% for the identification of the SARS-Cov-2 variants under 1 min. With the increasing need for rapid and improved disease diagnosis and monitoring, the PoC platform proved its potential for real time monitoring by providing accurate and fast variant identification without any expertise and pre sample preparation, which is exactly what societies need in this time of pandemic.

5.
Anal Chem ; 93(24): 8585-8594, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34081452

ABSTRACT

The global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has revealed the urgent need for accurate, rapid, and affordable diagnostic tests for epidemic understanding and management by monitoring the population worldwide. Though current diagnostic methods including real-time polymerase chain reaction (RT-PCR) provide sensitive detection of SARS-CoV-2, they require relatively long processing time, equipped laboratory facilities, and highly skilled personnel. Laser-scribed graphene (LSG)-based biosensing platforms have gained enormous attention as miniaturized electrochemical systems, holding an enormous potential as point-of-care (POC) diagnostic tools. We describe here a miniaturized LSG-based electrochemical sensing scheme for coronavirus disease 2019 (COVID-19) diagnosis combined with three-dimensional (3D) gold nanostructures. This electrode was modified with the SARS-CoV-2 spike protein antibody following the proper surface modifications proved by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) characterizations as well as electrochemical techniques. The system was integrated into a handheld POC detection system operated using a custom smartphone application, providing a user-friendly diagnostic platform due to its ease of operation, accessibility, and systematic data management. The analytical features of the electrochemical immunoassay were evaluated using the standard solution of S-protein in the range of 5.0-500 ng/mL with a detection limit of 2.9 ng/mL. A clinical study was carried out on 23 patient blood serum samples with successful COVID-19 diagnosis, compared to the commercial RT-PCR, antibody blood test, and enzyme-linked immunosorbent assay (ELISA) IgG and IgA test results. Our test provides faster results compared to commercial diagnostic tools and offers a promising alternative solution for next-generation POC applications.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Point-of-Care Systems , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Gold , Humans , Lasers , Nanostructures , SARS-CoV-2 , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL
...