Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 734: 139284, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32450400

ABSTRACT

This study aims to investigate the effect of anaerobic digestion (AD) on P species and how the different species are distributed in the digestate and digestate fractions, i.e. liquid and solid fractions. To do so, six full scale AD plants were used in this work and representative biomass samples were collected for investigation. P fractionation proceeded by adopting fractionation protocols consisting in step-by-step extraction with different solvents, (i.e. NaHCO3, HCl and NaOH-EDTA). Subsequently P species in the different fractions were identified by using 31PNMR. On average, AD did not substantially affect P speciation that depended on the P-fraction content of feeds. A high NaHCO3 fraction content in the ingestate determined, also, a high content of this fraction in the digestate, with consequently lower contents of both P-HCl and P-NaOH-EDTA, i.e. digestate P-fraction contents represented an inheritance of P speciation in the ingestate. A feed effect was observed in single plants. Highest pig/cow slurry content in the feeds seemed to decrease readily soluble P (extracted with NaHCO3) content and increased P associated with both organic matter and amorphous Fe/Al in the digestate. Again, using a large amount of digestate in the feed increased P-soluble content in the digestate. 31P NMR analyses revealed that inorganic P compounds dominated the spectra of all biomasses and fractions, with orthophosphate as the predominant species. When present, organic phosphorus compounds were typically represented by monophosphate esters, DNA and phospholipids, with a predominance of monophosphate esters.


Subject(s)
Phosphorus/chemistry , Anaerobiosis , Animals , Biomass , Cattle , Female , Swine
2.
Molecules ; 24(24)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847178

ABSTRACT

Sisymbrium officinale (L.) Scop., commonly known as "hedge mustard" or "the singer's plant" is a wild plant common in Eurasian regions. Its cultivation is mainly dedicated to herboristic applications and it has only recently been introduced into Italy. The active botanicals in S. officinale are glucosinolates, generally estimated by using UV or high-performance liquid chromatography (HPLC). Using both techniques, we measured the total glucosinolates from S. officinale in different parts of the plant as roots, leaves, seeds, and flowers. A comparison was made for cultivated and wild samples, and for samples obtained with different pre-treatment and fresh, frozen, and dried storage conditions. Cultivated and wild plants have a comparable amount of total glucosinolates, while drying procedures can reduce the final glucosinolates content. The content in glucoputranjivin, which is the chemical marker for glucosinolates in S. officinale, has been determined using HPLC and a pure reference standard. Glucoputranjivin and two isothiocyanates from S. officinale have been submitted to in vitro assays with the platform of bitter taste receptors of the T2Rs family. The results show that glucoputranjivin is a selective agonist of receptor T2R16.


Subject(s)
Brassicaceae/growth & development , Glucosinolates/chemistry , Isothiocyanates/pharmacology , Receptors, G-Protein-Coupled/agonists , Brassicaceae/chemistry , Chromatography, High Pressure Liquid , Flowers/chemistry , Freeze Drying , Gene Expression Regulation/drug effects , Glucosinolates/pharmacology , HEK293 Cells , Humans , Isothiocyanates/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Roots/chemistry , Seeds/chemistry , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...