Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767437

ABSTRACT

High-dose (HD) IL-2 was the first immuno-oncology agent approved for treating advanced renal cell carcinoma and metastatic melanoma, but its use was limited because of substantial toxicities. Multiple next-generation IL-2 agents are being developed to improve tolerability. However, a knowledge gap still exists for the genomic markers that define the target pharmacology for HD IL-2 itself. In this retrospective observational study, we collected PBMC samples from 23 patients with metastatic renal cell carcinoma who were treated with HD IL-2 between 2009 and 2015. We previously reported the results of flow cytometry analyses. In this study, we report the results of our RNA-sequencing immunogenomic survey, which was performed on bulk PBMC samples from immediately before (day 1), during (day 3), and after treatment (day 5) in cycle 1 and/or cycle 2 of the first course of HD IL-2. As part of a detailed analysis of immunogenomic response to HD IL-2 treatment, we analyzed the changes in individual genes and immune gene signatures. By day 3, most lymphoid cell types had transiently decreased, whereas myeloid transcripts increased. Although most genes and/or signatures generally returned to pretreatment expression levels by day 5, certain ones representative of B cell, NK cell, and T cell proliferation and effector functions continued to increase, along with B cell (but not T cell) oligoclonal expansion. Regulatory T cells progressively expanded during and after treatment. They showed strong negative correlation with myeloid effector cells. This detailed RNA-sequencing immunogenomic survey of IL-2 pharmacology complements results of prior flow cytometry analyses. These data provide valuable pharmacological context for assessing PBMC gene expression data from patients dosed with IL-2-related compounds that are currently in development.

2.
Clin Cancer Res ; 29(16): 3203-3213, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37233991

ABSTRACT

PURPOSE: The Piedmont study is a prospectively designed retrospective evaluation of a new 48-gene antifolate response signature (AF-PRS) in patients with locally advanced/metastatic nonsquamous (NS) non-small cell lung cancer (NSCLC) treated with pemetrexed-containing platinum doublet chemotherapy (PMX-PDC). The study tested the hypothesis that AF-PRS identifies patients with NS-NSCLC who have a higher likelihood of responding positively to PMX-PDC. The goal was to gather clinical evidence supporting AF-PRS as a potential diagnostic test. EXPERIMENTAL DESIGN: Residual pretreatment FFPE tumor samples and clinical data were analyzed from 105 patients treated with first-line (1L) PMX-PDC. Ninety-five patients had sufficient RNA sequencing (RNA-seq) data quality and clinical annotation for inclusion in the analysis. Associations between AF-PRS status and associate genes and outcome measures including progression-free survival (PFS) and clinical response were evaluated. RESULTS: Overall, 53% of patients were AF-PRS(+), which was associated with extended PFS, but not overall survival, versus AF-PRS(-) (16.6 months vs. 6.6 months; P = 0.025). In patients who were stage I to III patients at the time of treatment, PFS was further extended in AF-PRS(+) versus AF-PRS(-) (36.2 months vs. 9.3 months; P = 0.03). Complete response (CR) to therapy was noted in 14 of 95 patients. AF-PRS(+) preferentially selected a majority (79%) of CRs, which were evenly split between patients stage I to III (six of seven) and stage IV (five of seven) at the time of treatment. CONCLUSIONS: AF-PRS identified a significant population of patients with extended PFS and/or clinical response following PMX-PDC treatment. AF-PRS may be a useful diagnostic test for patients indicated for systemic chemotherapy, especially when determining the optimal PDC regimen for locally advanced disease.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Folic Acid Antagonists , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Pemetrexed , Platinum/therapeutic use , Folic Acid Antagonists/therapeutic use , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/adverse effects
3.
Cancer Res Commun ; 2(8): 894-903, 2022 08.
Article in English | MEDLINE | ID: mdl-36923304

ABSTRACT

Recombinant human high-dose IL2 (HD-IL2; aldesleukin) was one of the first approved immune-oncology agents based upon clinical activity in renal cell carcinoma (RCC) and metastatic melanoma but use was limited due to severe toxicity. Next-generation IL2 agents designed to improve tolerability are in development, increasing the need for future identification of genomic markers of clinical benefit and/or clinical response. In this retrospective study, we report clinical and tumor molecular profiling from patients with metastatic RCC (mRCC) treated with HD-IL2 and compare findings with patients with RCC treated with anti-PD-1 therapy. Genomic characteristics common and unique to IL2 and/or anti-PD-1 therapy response are presented, with insight into rational combination strategies for these agents. Residual pretreatment formalin-fixed paraffin embedded tumor samples from n = 36 patients with HD-IL2 mRCC underwent RNA-sequencing and corresponding clinical data were collected. A de novo 40-gene nearest centroid IL2 treatment response classifier and individual gene and/or immune marker signature differences were correlated to clinical response and placed into context with a separate dataset of n = 35 patients with anti-PD-1 mRCC. Immune signatures and genes, comprising suppressor and effector cells, were increased in patients with HD-IL2 clinical benefit. The 40-gene response classifier was also highly enriched for immune genes. While several effector immune signatures and genes were common between IL2 and anti-PD-1 treated patients, multiple inflammatory and/or immunosuppressive genes, previously reported to predict poor response to anti-PD-L1 immunotherapy, were only increased in IL2-responsive tumors. These findings suggest that common and distinct immune-related response markers for IL2 and anti-PD-1 therapy may help guide their use, either alone or in combination. Significance: Next-generation IL2 agents, designed for improved tolerability over traditional HD-IL2 (aldesleukin), are in clinical development. Retrospective molecular tumor profiling of patients treated with HD-IL2 or anti-PD-1 therapy provides insights into genomic characteristics of therapy response. This study revealed common and distinct immune-related predictive response markers for IL2 and anti-PD-1 therapy which may play a role in therapy guidance, and rational combination strategies for these agents.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Interleukin-2/genetics , Kidney Neoplasms/drug therapy , Retrospective Studies
4.
Genome Med ; 4(2): 14, 2012 Feb 23.
Article in English | MEDLINE | ID: mdl-22360970

ABSTRACT

BACKGROUND: Cigarette smoking is well-known to associate with accelerated skin aging as well as cardiovascular disease and lung cancer, in large part due to oxidative stress. Because metabolites are downstream of genetic variation, as well as transcriptional changes and post-translational modifications of proteins, they are the most proximal reporters of disease states or reversal of disease states. METHODS: In this study, we explore the potential effects of commonly available oral supplements (containing antioxidants, vitamins and omega-3 fatty acids) on the metabolomes of smokers (n = 11) compared to non-smokers (n = 17). At baseline and after 12 weeks of supplementation, metabolomic analysis was performed on serum by liquid and gas chromatography with mass spectroscopy (LC-MS and GC-MS). Furthermore, clinical parameters of skin aging, including cutometry as assessed by three dermatologist raters blinded to subjects' age and smoking status, were measured. RESULTS: Long-chain fatty acids, including palmitate and oleate, decreased in smokers by 0.76-fold (P = 0.0045) and 0.72-fold (P = 0.0112), respectively. These changes were not observed in non-smokers. Furthermore, age and smoking status showed increased glow (P = 0.004) and a decrease in fine wrinkling (P = 0.038). Cutometry showed an increase in skin elasticity in smokers (P = 0.049) but not in non-smokers. Complexion analysis software (VISIA) revealed decreases in the number of ultraviolet spots (P = 0.031), and cutometry showed increased elasticity (P = 0.05) in smokers but not non-smokers. CONCLUSIONS: Additional future work may shed light on the specific mechanisms by which long-chain fatty acids can lead to increased glow, improved elasticity measures and decreased fine wrinkling in smokers' skin. Our study provides a novel, medicine-focused application of available metabolomic technology to identify changes in sera of human subjects with oxidative stress, and suggests that oral supplementation (in particular, commonly available antioxidants, vitamins and omega-3 fatty acids) affects these individuals in a way that is unique (compared to non-smokers) on a broad level.

5.
Toxicol Pathol ; 37(4): 521-35, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19458390

ABSTRACT

Peroxisome proliferator-activated receptor-alpha (PPARalpha) agonists such as fenofibrate are used to treat dyslipidemia. Although fenofibrate is considered safe in humans, it is known to cause hepatocarcinogenesis in rodents. To evaluate untargeted metabolic profiling as a tool for gaining insight into the underlying pharmacology and hepatotoxicology, Fischer 344 male rats were dosed with 300 mg/kg/day of fenofibrate for 14 days and the urine and plasma were analyzed on days 2 and 14. A combination of liquid and gas chromatography mass spectrometry returned the profiles of 486 plasma and 932 urinary metabolites. Aside from known pharmacological effects, such as accelerated fatty acid beta-oxidation and reduced plasma cholesterol, new observations on the drug's impact on cellular metabolism were generated. Reductions in TCA cycle intermediates and biochemical evidence of lactic acidosis demonstrated that energy metabolism homeostasis was altered. Perturbation of the glutathione biosynthesis and elevation of oxidative stress markers were observed. Furthermore, tryptophan metabolism was up-regulated, resulting in accumulation of tryptophan metabolites associated with reactive oxygen species generation, suggesting the possibility of oxidative stress as a mechanism of nongenotoxic carcinogenesis. Finally, several metabolites related to liver function, kidney function, cell damage, and cell proliferation were altered by fenofibrate-induced toxicity at this dose.


Subject(s)
Fenofibrate/toxicity , Hypolipidemic Agents/toxicity , Liver/pathology , Metabolomics/methods , Acidosis, Lactic/metabolism , Animals , Biomarkers/blood , Biomarkers/urine , Chromatography, Liquid , Citric Acid Cycle/drug effects , Fatty Acids/metabolism , Fenofibrate/administration & dosage , Gas Chromatography-Mass Spectrometry , Hypolipidemic Agents/administration & dosage , Lipid Metabolism/drug effects , Male , Oxidative Stress/drug effects , PPAR alpha/metabolism , Rats , Rats, Inbred F344 , Toxicity Tests, Chronic , Tryptophan/metabolism
6.
Bioorg Med Chem Lett ; 12(21): 3047-50, 2002 Nov 04.
Article in English | MEDLINE | ID: mdl-12372498

ABSTRACT

A series of alpha-haloacetophenone derivatives was tested for inhibition of protein tyrosine phosphatases SHP-1 and PTP1B. The results show that the bromides are much more potent than the corresponding chlorides, whereas the phenyl ring is remarkably tolerant to modifications. Derivatization of the phenyl ring with a tripeptide Gly-Glu-Glu resulted in a potent, selective inhibitor against PTP1B.


Subject(s)
Acetophenones/chemical synthesis , Acetophenones/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Protein Tyrosine Phosphatases/antagonists & inhibitors , Binding Sites , Enzyme Inhibitors/chemistry , Indicators and Reagents , Kinetics , Peptides/chemical synthesis , Peptides/pharmacology , Protein Tyrosine Phosphatases/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...