Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr Sci ; 4: e38, 2015.
Article in English | MEDLINE | ID: mdl-26688724

ABSTRACT

The cashew apple is an unvalued by-product from the cashew nut industry, of which millions of tonnes are simply discarded globally. Interestingly, however, cashew apple nutrients may have beneficial effects for health even if these are still poorly described. The present study was designed to evaluate the effect of a hydro-alcoholic extract of cashew apple (cashew apple extract; CAE; Cashewin(™)) on obesity and diabetes, in two experimental designs using the diet-induced obesity (DIO) mouse model. First, in the preventive design, mice were treated orally with the CAE at the dose of 200 mg/kg body weight from the first day under a high-fat diet (HFD) and during 8 weeks thereafter. Second, in the curative design, the animals were first maintained under the HFD for 4 weeks and then treated with the CAE for a further 4 weeks under the same regimen. For both experimental designs, body weight, peri-epididymal adipose tissue, liver weight, food consumption, glycaemia, insulinaemia and insulin resistance were assessed. In both designs, the CAE significantly reduced body-weight gain and fat storage in both the peri-epididymal adipose tissue and the liver for mice under the HFD. This was achieved without modifying their energy consumption. Furthermore, glycaemia, insulinaemia and insulin resistance (homeostasis model assessment-insulin resistance) of the DIO mice were significantly lowered compared with the control group. Thus, a well-designed hydro-alcoholic extract of cashew apple could provide an attractive nutritional food ingredient to help support the management of body weight and associated metabolic parameters such as blood glucose and insulin levels.

2.
BMC Complement Altern Med ; 14: 351, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25249234

ABSTRACT

BACKGROUND: Postprandial hyperglycemia is a known risk factor for the development of several health disorders including type 2 diabetes, obesity, oxidative stress, and cardiovascular diseases. One encouraging approach for a better control of postprandial glycemia is to reduce carbohydrate digestion. Cinnamon extracts have been known for managing blood glucose. However, their effects on inhibiting digestion of carbohydrate have been poorly analyzed to date. The aim of this study was to investigate the acute effect of a specific Ceylon cinnamon hydro-alcoholic extract (CCE) on carbohydrate digestion and post-meal blood glucose reduction. METHODS: In vitro enzymatic assays and in vivo starch tolerance tests in rats were designed as preclinical assays. Then, a randomized, double-blind, placebo-controlled, cross-over clinical trial was conducted in 18 healthy female and male volunteers. Following the intake of 1 g of CCE, the subjects ate a standardized meal. Blood samples were collected during the 2 hours following the meal to measure glucose and insulin concentrations. Areas under the curves were calculated and statistical differences between the CCE and placebo groups were analyzed using the Mann Whitney-Wilcoxon test. RESULTS: CCE has demonstrated in the in vitro study that it inhibited pancreatic alpha-amylase activity with an IC50 of 25 µg/mL. In the in vivo study, CCE was shown to acutely reduce the glycemic response to starch in a dose-dependent manner in rats. This effect was significant from the dose of 12.5 mg/kg of body weight. In both, the in vitro and in vivo studies, the hydro-alcoholic extract has shown to be more efficacious than the aqueous extract. In the human clinical trial, 1 g of CCE lowered the area under the curve of glycemia between 0 and 120 min by 14.8% (P = 0.15) and between 0 and 60 min by 21.2% (P < 0.05) compared to the placebo. This effect occurred without stimulating insulin secretion. No adverse effects were reported. CONCLUSION: These results suggest that Ceylon cinnamon hydro-alcoholic extract (CCE) may provide a natural and safe solution for the reduction of postprandial hyperglycemia and therefore help to reduce the risks of developing metabolic disorders. TRIAL REGISTRATION: ClinicalTrials.gov NCT02074423 (26/02/2014).


Subject(s)
Blood Glucose/drug effects , Cinnamomum zeylanicum/chemistry , Plant Extracts/pharmacology , Starch/metabolism , alpha-Amylases/drug effects , Adult , Animals , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Humans , Male , Plant Extracts/chemistry , Postprandial Period , Rats , Rats, Wistar , alpha-Amylases/antagonists & inhibitors
3.
Molecules ; 19(3): 3025-37, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24619301

ABSTRACT

Flax (Linum usitatissimum L.) seeds are widely used for oil extraction and the cold-pressed flaxseed (or linseed) cakes obtained during this process constitute a valuable by-product. The flavonol herbacetin diglucoside (HDG) has been previously reported as a constituent of the flaxseed lignan macromolecule linked through ester bonds to the linker molecule hydroxymethylglutaric acid. In this context, the development and validation of a new approach using microwave-assisted extraction (MAE) of HDG from flaxseed cakes followed by quantification with a reverse-phase HPLC system with UV detection was purposed. The experimental parameters affecting the HDG extraction yield, such as microwave power, extraction time and sodium hydroxide concentration, from the lignan macromolecule were optimized. A maximum HDG concentration of 5.76 mg/g DW in flaxseed cakes was measured following an irradiation time of 6 min, for a microwave power of 150 W using a direct extraction in 0.1 M NaOH in 70% (v/v) aqueous methanol. The optimized method was proven to be rapid and reliable in terms of precision, repeatability, stability and accuracy for the extraction of HDG. Comparison with a conventional extraction method demonstrated that MAE is more effective and less time-consuming.


Subject(s)
Flavonoids/chemistry , Flax/chemistry , Glucosides/chemistry , Plant Extracts/chemistry , Seeds/chemistry , Chemical Fractionation/methods , Chromatography, High Pressure Liquid , Microwaves
4.
Phytochemistry ; 68(22-24): 2744-52, 2007.
Article in English | MEDLINE | ID: mdl-17988697

ABSTRACT

[(13)C(2)]-Coniferin was provided to a flax (Linum usitatissimum L.) cell suspension to monitor subsequent dimerisation by MS and NMR. The label was mainly incorporated into a 8-8'-linked lignan, lariciresinol diglucoside, a 8-5'-linked neolignan, dehydrodiconiferyl alcohol glucoside and a diastereoisomeric mixture of a 8-O-4'-linked neolignan, guaiacylglycerol-beta-coniferyl alcohol ether glucoside. This latter compound is reported for the first time in flax. The strong and transient increase in these compounds in fed cells was concomitant with the observed peak in coniferin content. These results suggest (i) a rapid metabolisation of coniferin into lignans and neolignans and indicate the capacity of flax cells to operate different types of couplings, and (ii) a continuous synthesis and subsequent metabolisation of coniferin-derived dimers all over the culture period.


Subject(s)
Cinnamates/chemistry , Cinnamates/metabolism , Flax/chemistry , Flax/metabolism , Lignans/biosynthesis , Lignans/chemistry , Cells, Cultured , Chromatography, High Pressure Liquid , Dimerization , Kinetics , Magnetic Resonance Spectroscopy , Molecular Structure , Spectrometry, Mass, Electrospray Ionization
5.
Phytochem Anal ; 18(4): 275-82, 2007.
Article in English | MEDLINE | ID: mdl-17623361

ABSTRACT

A microwave-assisted extraction (MAE) method has been applied for the first time to the extraction of the main lignan, secoisolariciresinol diglucoside (SDG), and the two most concentrated hydroxycinnamic acid glucosides in flaxseed. The effects of microwave power, extraction time and alkaline treatment were investigated. It was shown that a 3 min MAE resulted in an SDG content of 16.1+/-0.4 mg/g, a p-coumaric acid glucoside content of 3.7+/-0.2 mg/g and a ferulic acid glucoside content of 4.1+/-0.2 mg/g. These values were compared with those obtained using conventional extraction methods and the results demonstrated that MAE was more effective in terms of both yield and time consumption.


Subject(s)
Butylene Glycols/chemistry , Coumaric Acids/chemistry , Flax/chemistry , Glucosides/chemistry , Microwaves , Phenols/chemistry , Phenols/isolation & purification , Seeds/chemistry , Molecular Structure , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...