Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters











Publication year range
1.
Polym Chem ; 15(39): 3935-3953, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39310896

ABSTRACT

Significant advancements in the syntheses of cyclobutane containing small molecules and polymers are described in the last 15 years. Small molecule cyclobutanes are under investigation for their diverse pharmacological activities, while polymers with cyclobutane backbones are emerging as novel mechanophores, stress-responsive materials, and sustainable plastics. Within these chemistries, [2 + 2] photocycloadditions to yield truxinates and truxillates are highly efficient offering a versatile strategy to access complex scaffolds. This article provides a comprehensive review on the synthetic methodologies, properties, and applications of polymer truxinates and truxillates, providing the background necessary to understand current developments and envision future applications. Additionally, we highlight the links between the development, discoveries, and synthetic methodologies of small molecules and cyclobutane polymers. We emphasize structure property relationships and discuss methods to control composition and structure for desired applications. We begin with a discussion of synthetic techniques for small molecule and polymer cyclobutanes followed by their greater applications, including pharmacological and material properties with examples including sustainable plastics and stimuli-responsive systems.

2.
Org Lett ; 26(36): 7484-7488, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39231246

ABSTRACT

A photoredox catalyzed [3 + 2] dipolar cycloaddition between acyclic carbonyl ylides generated from α-cyano epoxides and dipolarophiles is described. This method, influenced by anionic charge localization and temperature control, enabled the synthesis of regioselective functionalized cyclic ethers. By leveraging different dipolarophiles, Lewis acid mediated activation afforded either furan or hydroxy-dihydronaphthalene scaffolds. A direct synthesis of lignan natural products isodiphyllin and diphyllin is achieved by exploiting the nitrile's reactivity as a directing handle for the desired regioisomer.

3.
ACS Chem Neurosci ; 15(11): 2265-2282, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38743607

ABSTRACT

Prion diseases are invariably fatal neurodegenerative diseases of humans and other animals for which there are no effective treatment options. Previous work from our laboratory identified phenethylpiperidines as a novel class of anti-prion compounds. While working to identify the molecular target(s) of these molecules, we unexpectedly discovered ten novel antiprion compounds based on their known ability to bind to the sigma receptors, σ1R and σ2R, which are currently being tested as therapeutic or diagnostic targets for cancer and neuropsychiatric disorders. Surprisingly, however, knockout of the respective genes encoding σ1R and σ2R (Sigmar1 and Tmem97) in prion-infected N2a cells did not alter the antiprion activity of these compounds, demonstrating that these receptors are not the direct targets responsible for the antiprion effects of their ligands. Further investigation of the most potent molecules established that they are efficacious against multiple prion strains and protect against downstream prion-mediated synaptotoxicity. While the precise details of the mechanism of action of these molecules remain to be determined, the present work forms the basis for further investigation of these compounds in preclinical studies. Given the therapeutic utility of several of the tested compounds, including rimcazole and haloperidol for neuropsychiatric conditions, (+)-pentazocine for neuropathic pain, and the ongoing clinical trials of SA 4503 and ANAVEX2-73 for ischemic stroke and Alzheimer's disease, respectively, this work has immediate implications for the treatment of human prion disease.


Subject(s)
Prion Diseases , Receptors, sigma , Receptors, sigma/metabolism , Receptors, sigma/drug effects , Animals , Ligands , Prion Diseases/drug therapy , Prion Diseases/metabolism , Mice , Humans , Prions/drug effects , Prions/metabolism , Sigma-1 Receptor , Cell Line, Tumor
4.
ACS Macro Lett ; 13(5): 607-613, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38695337

ABSTRACT

We report an improved and efficient method to prepare well-defined, structurally complex truxinate cyclobutane polymers via a thioxanthone sensitized solution state [2 + 2] photopolymerization. Monomers with varying electron density and structure polymerize in good to excellent yields to afford a library of 42 polyesters. Monomers with internal olefin separation distances of greater than 5 Å undergo polymerization via intermolecular [2 + 2] photocycloaddition readily, as opposed to the intramolecular [2 + 2] photocycloaddition observed in monomers with olefins in closer proximity. Use of a continuous flow reactor decreases reaction time, increases polymer molecular weight, and decreases dispersity compared to batch reactions. Furthermore, under continuous flow, polymerization is readily scalable beyond what is possible with batch reactions. This advancement ushers truxinate cyclobutane-based polyesters, which have been historically limited to a few examples and only research scale quantities, to the forefront of development as new materials for potential use across industry sectors.

5.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38077011

ABSTRACT

Prion diseases are invariably fatal neurodegenerative diseases of humans and other animals for which there are no treatment options. Previous work from our laboratory identified phenethyl piperidines as novel class of anti-prion compounds. While working to identify the molecular target(s) of these molecules, we unexpectedly discovered ten novel anti-prion compounds based on their known ability to bind to the sigma receptors, σ 1 R and 2 R, which are currently being tested as therapeutic or diagnostic targets for cancer and neuropsychiatric disorders. Surprisingly, however, knockout of the respective genes encoding σ 1 R and σ 2 R ( Sigmar1 and Tmem97 ), in prion infected N2a cells did not alter the anti-prion activity of these compounds, demonstrating that these receptors are not the direct targets responsible the anti-prion effects of their ligands. Further investigation of the most potent molecules established that they are efficacious against multiple prion strains and protect against downstream prion-mediated synaptotoxicity. While the precise details of the mechanism of action of these molecules remains to be determined, the present work forms the basis for further investigations of these compounds in pre-clinical studies. Given the therapeutic utility of several of the tested compounds, including rimcazole and haloperidol for neuropsychiatric conditions, (+)-pentazocine for neuropathic pain, and the ongoing clinical trials of SA 4503 and ANAVEX2-73 for ischemic stroke and Alzheimer's disease, respectively, this work has immediate implications for the treatment of human prion disease.

6.
J Org Chem ; 88(18): 13135-13141, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37657122

ABSTRACT

A one-step transformation to produce 8,9-dihydrocannabidiol (H2CBD) and related "neocannabinoids" via controlled Friedel-Crafts reactions is reported. Experimental and computational studies probing the mechanism of neocannabinoid synthesis from cyclic allylic alcohol and substituted resorcinol reaction partners provide understanding of the kinetic and thermodynamic factors driving regioselectivity for the reaction. Herein, we present the reaction scope for neocannabinoid synthesis including the production of both normal and abnormal isomers under both kinetic and thermodynamic control. Discovery and optimization of this one-step protocol between various allylic alcohols and resorcinol derivatives are discussed and supported with density functional theory calculations.

7.
iScience ; 24(8): 102845, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34381970

ABSTRACT

Macrophages contribute to host immunity and tissue homeostasis via alternative activation programs. M1-like macrophages control intracellular bacterial pathogens and tumor progression. In contrast, M2-like macrophages shape reparative microenvironments that can be conducive for pathogen survival or tumor growth. An imbalance of these macrophages phenotypes may perpetuate sites of chronic unresolved inflammation, such as infectious granulomas and solid tumors. We have found that plant-derived and synthetic rocaglates sensitize macrophages to low concentrations of the M1-inducing cytokine IFN-gamma and inhibit their responsiveness to IL-4, a prototypical activator of the M2-like phenotype. Treatment of primary macrophages with rocaglates enhanced phagosome-lysosome fusion and control of intracellular mycobacteria. Thus, rocaglates represent a novel class of immunomodulators that can direct macrophage polarization toward the M1-like phenotype in complex microenvironments associated with hypofunction of type 1 and/or hyperactivation of type 2 immunity, e.g., chronic bacterial infections, allergies, and, possibly, certain tumors.

8.
J Am Chem Soc ; 143(10): 3779-3793, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33683866

ABSTRACT

Macrocycles, including macrocyclic peptides, have shown promise for targeting challenging protein-protein interactions (PPIs). One PPI of high interest is between Kelch-like ECH-Associated Protein-1 (KEAP1) and Nuclear Factor (Erythroid-derived 2)-like 2 (Nrf2). Guided by X-ray crystallography, NMR, modeling, and machine learning, we show that the full 20 nM binding affinity of Nrf2 for KEAP1 can be recapitulated in a cyclic 7-mer peptide, c[(D)-ß-homoAla-DPETGE]. This compound was identified from the Nrf2-derived linear peptide GDEETGE (KD = 4.3 µM) solely by optimizing the conformation of the cyclic compound, without changing any KEAP1 interacting residue. X-ray crystal structures were determined for each linear and cyclic peptide variant bound to KEAP1. Despite large variations in affinity, no obvious differences in the conformation of the peptide binding residues or in the interactions they made with KEAP1 were observed. However, analysis of the X-ray structures by machine learning showed that locations of strain in the bound ligand could be identified through patterns of subangstrom distortions from the geometry observed for unstrained linear peptides. We show that optimizing the cyclic peptide affinity was driven partly through conformational preorganization associated with a proline substitution at position 78 and with the geometry of the noninteracting residue Asp77 and partly by decreasing strain in the ETGE motif itself. This approach may have utility in dissecting the trade-off between conformational preorganization and strain in other ligand-receptor systems. We also identify a pair of conserved hydrophobic residues flanking the core DxETGE motif which play a conformational role in facilitating the high-affinity binding of Nrf2 to KEAP1.


Subject(s)
Kelch-Like ECH-Associated Protein 1/metabolism , Machine Learning , NF-E2-Related Factor 2/metabolism , Peptides/metabolism , Amino Acid Motifs , Crystallography, X-Ray , Cyclization , Fluorescence Polarization , Humans , Hydrogen Bonding , Kelch-Like ECH-Associated Protein 1/chemistry , Kelch-Like ECH-Associated Protein 1/genetics , Mutagenesis, Site-Directed , NF-E2-Related Factor 2/chemistry , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Protein Binding , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Structure-Activity Relationship
9.
Org Lett ; 23(2): 525-529, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33395312

ABSTRACT

Herein, we report a unified approach to azepines by dearomative photochemical rearrangement of aromatic N-ylides. Deprotonation of quaternary aromatic salts with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) or N,N,N',N'-tetramethylquanidine (TMG) under visible light irradiation provides mono- and polycyclic azepines in yields up to 98%. This ring-expansion presents a new mode of access to functionalized azepines from N-heteroarenes using two straightforward steps and simple starting materials.

10.
Inorg Chem ; 59(22): 16500-16513, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33119300

ABSTRACT

A new air-stable catalyst for the oxidative dehydrogenation of benzylic alcohols under ambient conditions has been developed. The synthesis and characterization of this compound and the related monomeric and dimeric V(IV)- and V(V)-pinF (pinF = perfluoropinacolate) complexes are reported herein. Monomeric V(IV) complex (Me4N)2[V(O)(pinF)2] (1) and dimeric (µ-O)2-bridged V(V) complex (Me4N)2[V2(O)2(µ-O)2(pinF)2] (3a) are prepared in water under ambient conditions. Monomeric V(V) complex (Me4N)[V(O)(pinF)2] (2) may be generated via chemical oxidation of 1 under an inert atmosphere, but dimerizes to 3a upon exposure to air. Complexes 1 and 2 display a perfectly reversible VIV/V couple at 20 mV (vs Ag/AgNO3), whereas a quasi-reversible VIV/V couple at -865 mV is found for 3a. Stoichiometric reactions of 3a with both fluorenol and TEMPOH result in the formation of (Me4N)2[V2(O)2(µ-OH)2(pinF)2] (4a), which contains two V(IV) centers that display antiferromagnetic coupling. In order to structurally characterize the dinuclear anion of 4a, {K(18C6)}+ countercations were employed, which formed stabilizing K···O interactions between the counterion and each terminal oxo moiety and H-bonding between the oxygen atoms of the crown ether and µ-OH bridges of the dimer, resulting in {K(18C6)}2[V2(O)2(µ-OH)2(pinF)2] (4b). The formal storage of H2 in 4a is reversible and proton-coupled electron transfer (PCET) from crystals of 4a regenerates 3a upon exposure to air over the course of several days. Furthermore, the reaction of 3a (2%) under ambient conditions with excess fluorenol, cinnamyl alcohol, or benzyl alcohol resulted in the selective formation of fluorenone (82% conversion), cinnamaldehyde (40%), or benzaldehyde (7%), respectively, reproducing oxidative alcohol dehydrogenation (OAD) chemistry known for VOx surfaces and demonstrating, in air, the thermodynamically challenging selective oxidation of alcohols to aldehydes/ketones.

11.
Org Lett ; 22(16): 6489-6493, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32806135

ABSTRACT

A one-pot synthesis of dihydronaphthalenes and arylnaphthalenes from epoxides and common dipolarophiles is described. The reaction proceeds through photoredox activation of epoxides to carbonyl ylides, which undergo concerted [3 + 2] dipolar cycloaddition with dipolarophiles to provide tetrahydrofurans or 2,5-dihydrofurans. In the same flask, acid promoted rearrangement affords densely functionalized dihydronaphthalenes and arylnaphthalenes, respectively, in an overall redox-neutral sequence of transformations. Succinct total synthesis (4-6 steps) of pycnanthulignene B and C and justicidin E are reported.

12.
Chem Sci ; 10(33): 7746-7754, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31588322

ABSTRACT

Herein, we detail a unified synthetic approach to the classical lignan family of natural products that hinges on divergence from a common intermediate that was strategically identified from nature's biosynthetic blueprints. Efforts toward accessing the common intermediate through a convergent and modular approach resulted in the discovery of a sterically encumbered photoredox catalyst that can selectively generate carbonyl ylides from electron-rich epoxides. These can undergo concerted [3 + 2] dipolar cycloadditions to afford tetrahydrofurans, which were advanced (2-4 steps) to at least one representative natural product or natural product scaffold within all six subtypes in classical lignans. The application of those synthetic blueprints to the synthesis of heterolignans bearing unnatural functionality was demonstrated, which establishes the potential of this strategy to accelerate structure-activity-relationship studies of these natural product frameworks and their rich biological activity.

13.
Beilstein J Org Chem ; 14: 2308-2312, 2018.
Article in English | MEDLINE | ID: mdl-30254694

ABSTRACT

A one-pot synthesis of epoxides from commercially available benzyl alcohols and aldehydes is described. The reaction proceeds through in situ generation of sulfonium salts from benzyl alcohols and their subsequent deprotonation for use in Corey-Chaykovsky epoxidation of aldehydes. The generality of the method is exemplified by the synthesis of 34 epoxides that were made from an array of electronically and sterically varied alcohols and aldehydes.

14.
Org Lett ; 20(17): 5177-5180, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30118240

ABSTRACT

Tricyclic cores of the daphnane diterpene orthoesters (DDOs) are synthesized in 10 steps from readily available materials. Key to their assembly is the development of a stereocontrolled p-quinol functionalization sequence which enables rapid access to DDO C-ring stereopolyads from simple precursors. Problems encountered in stereo- and regioselectivity are highlighted and solved by exact changes in choreography, although it is shown that the undesired stereochemical outcomes also proceed with high selectivity.

15.
Org Lett ; 19(19): 5268-5271, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28892633

ABSTRACT

The first example of a regioselective and enantioselective intermolecular Buchner ring expansion is reported using continuous flow. The practicality and scope of the reaction are greatly improved under flow conditions. Reactions of ethyl diazoacetate with symmetric and nonsymmetric arenes afford cycloheptatrienes in good yield and excellent regioselectivity. The first example of an asymmetric intermolecular Buchner reaction is demonstrated with disubstituted diazo esters in good to excellent enantioselectivity. The asymmetric reactions proceed with absolute regioselectivity to afford cycloheptatrienes with an all-carbon quaternary center.

16.
Bioorg Med Chem ; 25(23): 6197-6202, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28666859

ABSTRACT

Herein, we report the development of continuous flow photoreactors for large scale ESIPT-mediated [3+2]-photocycloaddition of 2-(p-methoxyphenyl)-3-hydroxyflavone and cinnamate-derived dipolarophiles. These reactors can be efficiently numbered up to increase throughput two orders of magnitude greater than the corresponding batch reactions.


Subject(s)
Alkaloids/chemical synthesis , Benzofurans/chemistry , Biological Products/chemistry , Alkaloids/chemistry , Benzofurans/chemical synthesis , Biological Products/chemical synthesis , Cinnamates/chemistry , Cycloaddition Reaction , Flavonoids/chemistry , Light , Photochemical Processes
17.
Org Lett ; 19(11): 2989-2992, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28530103

ABSTRACT

We report the exploration into photoredox generation of carbonyl ylides from benzylic epoxides using newly designed 4-mesityl-2,6-diphenylpyrylium tetrafluoroborate (MDPT) and 4-mesityl-2,6-di-p-tolylpyrylium tetrafluoroborate (MD(p-tolyl)PT) catalysts. These catalysts are excited at visible wavelengths, are highly robust, and exhibit some of the highest oxidation potentials reported. Their utility was demonstrated in the mild and efficient generation of carbonyl ylides from benzylic epoxides that otherwise could not be carried out by current common photoredox catalysts.

18.
J Biol Chem ; 291(50): 26164-26176, 2016 Dec 09.
Article in English | MEDLINE | ID: mdl-27803163

ABSTRACT

Prion diseases are devastating neurodegenerative disorders with no known cure. One strategy for developing therapies for these diseases is to identify compounds that block conversion of the cellular form of the prion protein (PrPC) into the infectious isoform (PrPSc). Most previous efforts to discover such molecules by high-throughput screening methods have utilized, as a read-out, a single kind of cellular assay system: neuroblastoma cells that are persistently infected with scrapie prions. Here, we describe the use of an alternative cellular assay based on suppressing the spontaneous cytotoxicity of a mutant form of PrP (Δ105-125). Using this assay, we screened 75,000 compounds, and identified a group of phenethyl piperidines (exemplified by LD7), which reduces the accumulation of PrPSc in infected neuroblastoma cells by >90% at low micromolar doses, and inhibits PrPSc-induced synaptotoxicity in hippocampal neurons. By analyzing the structure-activity relationships of 35 chemical derivatives, we defined the pharmacophore of LD7, and identified a more potent derivative. Active compounds do not alter total or cell-surface levels of PrPC, and do not bind to recombinant PrP in surface plasmon resonance experiments, although at high concentrations they inhibit PrPSc-seeded conversion of recombinant PrP to a misfolded state in an in vitro reaction (RT-QuIC). This class of small molecules may provide valuable therapeutic leads, as well as chemical biological tools to identify cellular pathways underlying PrPSc metabolism and PrPC function.


Subject(s)
Piperidines/chemistry , Piperidines/pharmacology , PrPSc Proteins/antagonists & inhibitors , PrPSc Proteins/metabolism , Surface Plasmon Resonance/methods , Cell Line, Tumor , HEK293 Cells , Humans , PrPSc Proteins/genetics
19.
ACS Med Chem Lett ; 7(10): 929-932, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27774131

ABSTRACT

A novel, isoform-selective inhibitor of histone deacetylase 8 (HDAC8) has been discovered by the repurposing of a diverse compound collection. Medicinal chemistry optimization led to the identification of a highly potent (0.8 nM) and selective inhibitor of HDAC8.

20.
Chem Rev ; 116(17): 9629-30, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27625298
SELECTION OF CITATIONS
SEARCH DETAIL