Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chempluschem ; : e202400120, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488262

ABSTRACT

Dipnictenes of the type RPn=PnR (Pn=P, As, Sb, Bi) can be viewed as dimers of the corresponding pnictinidenes R-Pn. Phosphanylidene- and arsanylidenephosphoranes (R-Pn(PMe3); Pn=P, As) have been shown to be versatile synthetic surrogates for the delivery of pnictinidene fragments. We now report that thermal treatment of 1 : 1 mixtures of R-P(PMe3) and R'-As(PMe3) gives access to arsaphosphenes of the type RP=AsR'. Three examples are presented and the properties and reactivity of Mes*P=AsDipTer (1) (Mes*=2,4,6-tBu3-C6H2; DipTer=2,6-(2,6-iPr2C6H3)2-C6H3) were studied in detail. Solid state 31P NMR spectroscopy revealed a large 31P NMR chemical shift anisotropy with a span of ca. 920 ppm for 1 while computational methods were employed to investigate this pronounced magnetic deshielding of the P atom in 1. In the presence of the carbene IMe4 (IMe4=:C(MeNCMe)2) 1 is shown to be split into the corresponding NHC adducts Mes*P(IMe4) and DipTerAs(IMe4), which is additionally shown for diarsenes.

2.
Chempluschem ; 88(8): e202300078, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36824017

ABSTRACT

Phosphaalumenes are the heavier isoelectronic analogs of alkynes and have eluded facile synthesis until recently. We have reported that the combination of a phosphinidene transfer agent, Ar TerP(PMe3 ) (Ar Ter=2,6-Ar2 -C6 H3 ), with (Cp*Al)4 (Cp*=C5 (CH3 )5 ) afforded the phosphaalumenes Ar TerPAlCp* as isolable, violet, thermally stable compounds. In here we describe attempts to utilize Mes*P(PMe3 ) (Mes*=2,4,6-tBu3 -C6 H2 ) as a phosphinidene source in combination with different Al(I) precursors, namely Dip NacnacAl (Dip Nacnac=HC[C(Me)NDip]2 , Dip=2,6-iPr2 -C6 H3 ), (Cp*Al)4 and Cp3t Al (Cp3t =1,2,4-tBu3 -C5 H2 ). In all cases the formation of phosphaalumenes was not observed, however, their intermediate formation is indicated by formation of the dimer [Cp*Al(µ-PMes*)]2 (2) and C-H-bond activation products along the putative P=Al bond, giving unusual 1,2-P,Al-tetrahydronaphtalene derivatives 1 and 4, clearly underlining the role the sterically demanding group on phosphorus plays in these transformations. The reactivity studies are supported by theoretical studies, demonstrating a thermodynamic preference for the C-H activation products. Additionally, we show that there are potential pitfalls in the synthesis of Cp*2 AlH, the precursor to make (Cp*Al)4 and give recommendations how to circumvent these.

3.
Inorg Chem ; 61(4): 2031-2038, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35041414

ABSTRACT

Formal addition reactions between the open-shell singlet biradical [P(µ-NTer)]2 (1Ter) and xanthione, thioxanthione, as well as ferrocenyl naphthyl thioketone were studied in detail. Reactions were performed at room temperature and led to the formation of strained [2.1.1]-cage P,S-heterocycles (3). All addition products were isolated and fully characterized by spectroscopic methods. Furthermore, reversible cleavage of the xanthenthione-biradical addition product into the parent compounds (biradical and thioketone) could be demonstrated by 31P{1H} NMR spectroscopy. The thermodynamic stability of all cyclization products with respect to the elimination of thioketone was studied by quantum-chemical computations including solvent effects. Regarding the dissociation of addition products 3 into the fragment molecules 1Ter and ketone/thioketone, calculations prove that a significantly larger distortion energy in ketones compared with thioketones causes lower thermodynamic stability of the ketone adducts.

4.
Phys Chem Chem Phys ; 23(12): 7434-7441, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33876103

ABSTRACT

As previously reported, photoisomerization of the open-shell singlet biradicaloid [TerNP]2CNDmp (2) yields its closed-shell housane-type isomer (3). In the present study, pump-probe spectroscopy was applied to investigate the excited-state dynamics of the photoisomerization, indicating ultrafast de-excitation of the S1 state through a conical intersection, in agreement with computational predictions. The structural and electronic changes during the isomerization process are discussed to gain an understanding of the reaction pathway and the transformation of the biradicaloid to a closed-shell species.

5.
Chemphyschem ; 22(9): 813-817, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33725397

ABSTRACT

Biradicaloids attract attention as a novel class of reagents that can activate small molecules such as H2 , ethylene and CO2 . Herein, we study activation of parahydrogen (nuclear spin-0 isomer of H2 ) by a number of 4- and 5-membered pnictogen biradicaloids based on hetero-cyclobutanediyl [X(µ-NTer)2 Z] and hetero-cyclopentanediyl [X(µ-NTer)2 ZC(NDmp)] moieties (X,Z=P,As; Ter=2,6-Mes2 -C6 H3 , Dmp=2,6-Me2 -C6 H3 ). The concerted mechanism of this reaction allowed observing strong nuclear spin hyperpolarization effects in 1 H and 31 P NMR experiments. Signal enhancements from two to four orders of magnitude were detected at 9.4 T depending on the structure. It is demonstrated that 4-membered biradicaloids activate H2 reversibly, leading to SABRE (signal amplification by reversible exchange) hyperpolarization of biradicaloids themselves and their H2 adducts. In contrast, the 5-membered counterparts demonstrate rather irreversible parahydrogen activation resulting in hyperpolarized H2 adducts only. Kinetic measurements provided parameters to support experimental observations.

6.
Dalton Trans ; 49(40): 13986-13992, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-32869789

ABSTRACT

The photo-isomerization of an isolable five-membered singlet biradical based on C, N, and P ([TerNP]2CNDmp, 2a) selectively afforded a closed-shell housane-type isomer (3a) by forming a transannular P-P bond. In the dark, the housane-type species re-isomerized to the biradical, resulting in a fully reversible overall process. In the present study, the influence of tBuNC on the thermal reverse reaction was investigated: the isonitrile acted as a catalyst, thus allowing control over the thermal reaction rate. Moreover, tBuNC also reacted with the biradical to form an adduct species ([TerNP]2CNDmp·CNtBu, 4a), which can be regarded as the resting state of the system. The reactive species 2a and 3a could be re-generated in situ by irradiation with red light. The results of this study extend our understanding of this new class of molecular switches.

7.
Dalton Trans ; 49(39): 13655-13662, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-32985638

ABSTRACT

The trapping of classical hydrogen pseudohalides (HX, X = pseudohalogen = CN, N3, NCO, NCS, and PCO) utilizing a phosphorus-centered cyclic biradicaloid, [P(µ-NTer)]2, is reported. These formal Brønsted acids were generated in situ as gases and passed over the trapping reagent, the biradicaloid [P(µ-NTer)]2, leading to the formation of the addition product [HP(µ-NTer)2PX] (successful for X = CN, N3, and NCO). In addition to this direct addition reaction, a two-step procedure was also applied because we failed in isolating HPCO and HNCS addition products. This two-step process comprises the generation and isolation of the highly reactive [HP(µ-NTer)2PX]+ cation as a [B(C6F5)4]- salt, followed by salt metathesis with salts such as [cat]X (cat = PPh4, n-Bu3NMe), which also gives the desired [HP(µ-NTer)2PX] product, with the exception of the reaction with the PCO- salt. In this case, proton migration was observed, finally affording the formation of a [3.1.1]-hetero-propellane-type cage compound, an OC(H)P isomer of a HPCO adduct. All discussed species were fully characterized.

8.
J Org Chem ; 85(22): 14435-14445, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-32393023

ABSTRACT

The reaction of the singlet biradical [P(µ-NHyp)]2 (Hyp = hypersilyl, (Me3Si)3Si) with different isonitriles afforded a series of five-membered N2P2C heterocycles. Depending on the steric bulk of the substituent at the isonitrile, migration of a Hyp group was observed, resulting in two structurally similar but electronically very different isomers. As evidenced by comprehensive spectroscopic and theoretical studies, the heterocyclopentadiene isomer may be regarded as a rather unreactive closed-shell singlet species with one localized N═P and one C═P double bond, whereas the heterocyclopentanediyl isomer represents an open-shell singlet biradical with interesting photochemical properties, such as photoisomerization under irradiation with red light to a [2.1.0]-housane-type species.

SELECTION OF CITATIONS
SEARCH DETAIL
...