Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Aerosp Med Hum Perform ; 95(7): 353-366, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38915160

ABSTRACT

INTRODUCTION: Cabin decompression presents a threat in high-altitude-capable aircraft. A chamber study was performed to compare effects of rapid (RD) vs. gradual decompression and gauge impairment at altitude with and without hypoxia, as well as to assess recovery.METHODS: There were 12 participants who completed RD (1 s) and Gradual (3 min 12 s) ascents from 2743-7620 m (9000-25000 ft) altitude pressures while breathing air or 100% O2. Physiological indices included oxygen saturation (SPo2), heart rate (HR), respiration, end tidal O2 and CO2 partial pressures, and electroencephalography (EEG). Cognition was evaluated using SYNWIN, which combines memory, arithmetic, visual, and auditory tasks. The study incorporated ascent rate (RD, gradual), breathing gas (air, 100% O2) and epoch (ground-level, pre-breathe, ascent-altitude, recovery) as factors.RESULTS: Physiological effects in hypoxic "air" ascents included decreased SPo2 and end tidal O2 and CO2 partial pressures (hypocapnia), with elevated HR and minute ventilation (V˙E); SPo2 and HR effects were greater after RD (-7.3% lower and +10.0 bpm higher, respectively). HR and V˙E decreased during recovery. SYNWIN performance declined during ascent in air, with key metrics, including composite score, falling further (-75% vs. -50%) after RD. Broad cognitive impairment was not recorded on 100% O2, nor in recovery. EEG signals showed increased slow-wave activity during hypoxia.DISCUSSION: In hypoxic exposures, RD impaired performance more than gradual ascent. Hypobaria did not comprehensively impair performance without hypoxia. Lingering impairment was not observed during recovery, but HR and V˙E metrics suggested compensatory slowing following altitude stress. Participants' cognitive strategy shifted as hypoxia progressed, with efficiency giving way to "satisficing," redistributing effort to easier tasks.Beer J, Mojica AJ, Blacker KJ, Dart TS, Morse BG, Sherman PM. Relative severity of human performance decrements recorded in rapid vs. gradual decompression. Aerosp Med Hum Perform. 2024; 95(7):353-366.


Subject(s)
Altitude , Decompression , Heart Rate , Humans , Male , Heart Rate/physiology , Adult , Decompression/methods , Cognition/physiology , Hypoxia/physiopathology , Female , Electroencephalography , Oxygen Saturation/physiology , Aerospace Medicine , Young Adult , Respiration , Carbon Dioxide/blood
2.
Front Neuroergon ; 5: 1357905, 2024.
Article in English | MEDLINE | ID: mdl-38464394

ABSTRACT

Introduction: Real-time physiological episode (PE) detection and management in aircrew operating high-performance aircraft (HPA) is crucial for the US Military. This paper addresses the unique challenges posed by high acceleration (G-force) in HPA aircrew and explores the potential of a novel wearable functional near-infrared spectroscopy (fNIRS) system, named NIRSense Aerie, to continuously monitor cerebral oxygenation during high G-force exposure. Methods: The NIRSense Aerie system is a flight-optimized, wearable fNIRS device designed to monitor tissue oxygenation 13-20 mm below the skin's surface. The system includes an optical frontend adhered to the forehead, an electronics module behind the earcup of aircrew helmets, and a custom adhesive for secure attachment. The fNIRS optical layout incorporates near-distance, middle-distance, and far-distance infrared emitters, a photodetector, and an accelerometer for motion measurements. Data processing involves the modified Beer-Lambert law for computing relative chromophore concentration changes. A human evaluation of the NIRSense Aerie was conducted on six subjects exposed to G-forces up to +9 Gz in an Aerospace Environmental Protection Laboratory centrifuge. fNIRS data, pulse oximetry, and electrocardiography (HR) were collected to analyze cerebral and superficial tissue oxygenation kinetics during G-loading and recovery. Results: The NIRSense Aerie successfully captured cerebral deoxygenation responses during high G-force exposure, demonstrating its potential for continuous monitoring in challenging operational environments. Pulse oximetry was compromised during G-loading, emphasizing the system's advantage in uninterrupted cerebrovascular monitoring. Significant changes in oxygenation metrics were observed across G-loading levels, with distinct responses in Deoxy-Hb and Oxy-Hb concentrations. HR increased during G-loading, reflecting physiological stress and the anti-G straining maneuver. Discussion: The NIRSense Aerie shows promise for real-time monitoring of aircrew physiological responses during high G-force exposure. Despite challenges, the system provides valuable insights into cerebral oxygenation kinetics. Future developments aim for miniaturization and optimization for enhanced aircrew comfort and wearability. This technology has potential for improving anti-G straining maneuver learning and retention through real-time cerebral oxygenation feedback during centrifuge training.

3.
Aerosp Med Hum Perform ; 94(3): 135-141, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36829284

ABSTRACT

INTRODUCTION: A study was performed to evaluate a cockpit flight simulation suite for measuring moderate altitude effects in a limited subject group. Objectives were to determine whether the apparatus can detect subtle deterioration, record physiological processes throughout hypobaric exposure, and assess recovery.METHODS: Eight subjects trained to perform precision instrument control (PICT) flight and unusual attitude recovery (UAR) and completed chamber flights dedicated to the PICT and UAR, respectively. Each flight comprised five epochs, including ground level pressure (GLP), ascent through altitude plateaus at 10,000, 14,000, and 17,500 ft (3050, 4270, and 5338 m), then postexposure recovery. PICT performance was assessed using control error (FSE) and time-out-of-bounds (TOOB) when pilots exited the flight corridor. UARs were assessed using response times needed to initiate correction and to achieve wings-level attitude. Physiological indices included Spo2, heart rate (HR), end tidal O2 and CO2 pressures, and respiration metrics.RESULTS: Seven subjects completed both flights. PICT performance deteriorated at altitude: FSE increased 33% at 17,513 ft and 21% in Recovery vs. GLP. Mean TOOB increased from 11 s at GLP to 60 s in Recovery. UAR effects were less clear, with some evidence of accelerated responses during and after ascent.CONCLUSIONS: The test paradigm was shown to be effective; piloting impairment was detected during and after exposure. Physiological channels recorded a combination of hypoxia, elevated ventilation, and hypocapnia during ascent, followed by respiratory slowing in recovery. Findings indicate precision piloting and respiration are subject to changes during moderate altitude exposure and may remain altered after Spo2 recovers, and changes may be linked to hypocapnia.Beer J, Morse B, Dart T, Adler S, Sherman P. Lingering altitude effects during piloting and navigation in a synthetic cockpit. Aerosp Med Hum Perform. 2023; 94(3):135-141.


Subject(s)
Aerospace Medicine , Altitude , Humans , Hypocapnia , Hypoxia , Lung
4.
Aerosp Med Hum Perform ; 88(12): 1073-1080, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29157335

ABSTRACT

INTRODUCTION: Effects of exposure to hyperoxia (PiO2 > 105 mmHg), normoxia (PiO2 95-105 mmHg) and hypoxia (PiO2 < 95 mmHg) on simple and choice reaction performance tasks were evaluated. METHODS: Ten subjects performed simple and choice reaction time tests (SRT and CRT, respectively) at ground level for 40 min (20 min normoxic, 20 min hyperoxic, randomly assigned), 3048 m (10,000 ft) for 75 min (15 min hyperoxic, 60 min hypoxic), 4572 m (15,000 ft) for 60 min (15 min hyperoxic, 45 min hypoxic), and 6096 m (20,000 ft) for 35 min (15 min hyperoxic, 20 min hypoxic). SRT and CRT tests were also conducted at ground level 1 h after normoxic rest (recovery) to assess any recovery time effect on these psychomotor tasks. RESULTS: Total response time (TRT) significantly increased by 15 ms to 25 ms at all three altitudes for both the SRT and CRT tasks. At and below 4572 m, the performance changes were gradual over the duration of the exposures, whereas at 6096 m these changes were immediate. After 1 h, no performance decrement was measured. There was no statistical evidence that ground-level performance on these tasks was improved in hyperoxic vs. normoxic conditions. DISCUSSION: Results suggest mild decrements in reaction time due to hypoxia may occur as low as 3048 m (10,000 ft) while hyperoxia showed no positive effect on accuracy or reaction time at ground level or higher when performing simple and choice psychomotor reaction tasks.Dart T, Gallo M, Beer J, Fischer J, Morgan T, Pilmanis A. Hyperoxia and hypoxic hypoxia effects on simple and choice reaction times. Aerosp Med Hum Perform. 2017; 88(12):1073-1080.


Subject(s)
Choice Behavior/physiology , Hyperoxia/physiopathology , Hypoxia/physiopathology , Reaction Time/physiology , Adult , Humans , Psychomotor Performance/physiology , Task Performance and Analysis
5.
Aerosp Med Hum Perform ; 88(10): 952-957, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28923145

ABSTRACT

INTRODUCTION: A recent U-2 fatigue study, in which 10 subjects completed 2 simulated long-duration missions breathing either 100% oxygen or air in a hypobaric chamber, offered an opportunity to compare subjects' pulmonary function before and after remaining seated in a confined cockpit for 12 h. METHODS: In one U-2 mission configuration, the subject wore a full pressure suit and breathed aviator's breathing oxygen while chamber pressure was maintained at 4572 m (15,000 ft) above mean sea level. In the second mission configuration, subjects wore standard aircrew flight equipment and breathed air while chamber pressure was maintained at 2438 m (8000 ft) above mean sea level. Subjects' pulmonary function was assessed before and after the mission using four metrics: forced vital capacity, forced expiratory volume in 1 s, peak expiratory flow, and forced expiratory volume in 1 s/forced vital capacity ratio. RESULTS: Subjects showed significant declines for all four pulmonary metrics (2.7%, 6.4%, 13.9%, and 3.5%, respectively) after 12 h seated in the cockpit in both full pressure suit and aircrew flight equipment conditions. DISCUSSION: While the declines at both altitudes amounted to modest percentages of subjects' total pulmonary capacities, they emerged after a single, acute sedentary exposure and appear to be unrelated to the percentage of oxygen in the breathing gas. This might have operational implications in confined mission environments where physiological demands are interspersed with long periods of inactivity.Beer J, Dart TS, Fischer J, Kisner J. Pulmonary effects from a simulated long-duration mission in a confined cockpit. Aerosp Med Hum Perform. 2017; 88(10):952-957.


Subject(s)
Aerospace Medicine , Altitude , Lung/physiopathology , Military Personnel , Oxygen Inhalation Therapy , Pilots , Respiratory Function Tests , Adult , Female , Forced Expiratory Volume , Gravity Suits , Humans , Male , Peak Expiratory Flow Rate , Time Factors , Vital Capacity , Young Adult
6.
Aerosp Med Hum Perform ; 88(7): 617-626, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28641678

ABSTRACT

BACKGROUND: Hypoxia continues to present risks in military aviation. Hypoxia symptoms include sensory and cognitive effects; of these, it is important to identify which components of operator performance are most vulnerable to hypoxia-induced decline in order to determine which sensory modality is most effective for alerting an impaired aviator of an imminent hypoxic episode. METHODS: A study was performed in a hypobaric chamber to characterize deterioration of cognitive performance under moderate (MH) and severe (SH) hypoxia conditions, culminating in subjects' inability to perform tasks. Subjects operated a synthetic workstation, performing multiple simultaneous tasks during hypobaric exposures equivalent to 5486 m (18,000 ft) MH and 7620 m (25,000 ft) SH ascents. Performance was compared across baseline, altitude exposure, and recovery periods within MH vs. SH altitude profiles. Ascents lasted until at least one of a list of termination criteria was met, at which point the chamber was returned to ground level pressure and the subject resumed workstation performance during recovery. RESULTS: SH conditions generated greater deficits than MH conditions, and these more severe effects hastened the termination of exposures (5 vs. 18 min mean duration, respectively). Workstation performance collapsed rapidly on SH exposure, with Mathematics and Auditory Monitoring tasks proving vulnerable to breakdown. In MH exposures, these tasks exhibited impaired accuracy (declining 11% and 9%, respectively) and speed, with declines in Auditory Monitoring lingering into recovery. DISCUSSION: The relative robustness of memory and visual monitoring vs. the vulnerability of mathematical and auditory processing suggest that care should be taken designing purely auditory cockpit hypoxia warning alerts.Beer JMA, Shender BS, Chauvin D, Dart TS, Fischer J. Cognitive deterioration in moderate and severe hypobaric hypoxia conditions. Aerosp Med Hum Perform. 2017; 88(7):617-626.


Subject(s)
Altitude , Cognitive Dysfunction/psychology , Hypoxia/psychology , Task Performance and Analysis , Adult , Aerospace Medicine , Auditory Perception , Cognitive Dysfunction/etiology , Female , Healthy Volunteers , Humans , Hypoxia/complications , Male , Mathematics , Military Personnel , Young Adult
7.
J Obstet Gynaecol Can ; 39(1): 10-17, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28062017

ABSTRACT

Non-invasive prenatal testing (NIPT) is an exciting technology with the potential to provide a variety of clinical benefits, including a reduction in miscarriages, via a decline in invasive testing. However, there is also concern that the economic and near-future clinical benefits of NIPT have been overstated and the potential limitations and harms underplayed. NIPT, therefore, presents an opportunity to explore the ways in which a range of social pressures and policies can influence the translation, implementation, and use of a health care innovation. NIPT is often framed as a potential first tier screen that should be offered to all pregnant women, despite concerns over cost-effectiveness. Multiple forces have contributed to a problematic translational environment in Canada, creating pressure towards first tier implementation. Governments have contributed to commercialization pressure by framing the publicly funded research sector as a potential engine of economic growth. Members of industry have an incentive to frame clinical value as beneficial to the broadest possible cohort in order to maximize market size. Many studies of NIPT were directly funded and performed by private industry in laboratories lacking strong independent oversight. Physicians' fear of potential liability for failing to recommend NIPT may further drive widespread uptake. Broad social endorsement, when combined with these translation pressures, could result in the "routinization" of NIPT, thereby adversely affecting women's reproductive autonomy. Policymakers should demand robust independent evidence of clinical and public health utility relevant to their respective jurisdictions before making decisions regarding public funding for NIPT.


Subject(s)
Maternal Serum Screening Tests , Obstetrics/trends , Female , Humans , Obstetrics/legislation & jurisprudence , Pregnancy , Technology Transfer , Translational Research, Biomedical
8.
Aviat Space Environ Med ; 83(12): 1135-44, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23316541

ABSTRACT

INTRODUCTION: Experiments measured the effects of laser glare on visual orientation and motion perception. Laser stimuli were varied according to spectral composition and temporal presentation as subjects identified targets' tilt (Experiment 1) and movement (Experiment 2). The objective was to determine whether the glare parameters would alter visual disruption. METHODS: Three spectral profiles (monochromatic Green vs. polychromatic White vs. alternating Red-Green) were used to produce a ring of laser glare surrounding a target. Two experiments were performed to measure the minimum contrast required to report target orientation or motion direction. The temporal glare profile was also varied: the ring was illuminated either continuously or discontinuously. Time-averaged luminance of the glare stimuli was matched across all conditions. RESULTS: In both experiments, threshold (deltaL) values were approximately 0.15 log units higher in monochromatic Green than in polychromatic White conditions. In Experiment 2 (motion identification), thresholds were approximately 0.17 log units higher in rapidly flashing (6, 10, or 14 Hz) than in continuous exposure conditions. DISCUSSION: Monochromatic extended-source laser glare disrupted orientation and motion identification more than polychromatic glare. In the motion task, pulse trains faster than 6 Hz (but below flicker fusion) elevated thresholds more than continuous glare with the same time-averaged luminance. Under these conditions, alternating the wavelength of monochromatic glare over time did not aggravate disability relative to green-only glare. Repetitively flashing monochromatic laser glare induced occasional episodes of impaired motion identification, perhaps resulting from cognitive interference. Interference speckle might play a role in aggravating monochromatic glare effects.


Subject(s)
Aviation , Glare/adverse effects , Lasers/adverse effects , Motion Perception/physiology , Vision Disorders/etiology , Vision Disorders/physiopathology , Vision, Ocular/physiology , Adaptation, Ocular/physiology , Adult , Analysis of Variance , Contrast Sensitivity/physiology , Female , Humans , Linear Models , Male , Middle Aged , Photic Stimulation , Vision Tests/methods
10.
Aviat Space Environ Med ; 78(6): 579-86, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17571658

ABSTRACT

INTRODUCTION: Experiments measured the optokinetic cervical reflex (OKCR), wherein the banking pilot aligns the head with the horizon. In a synthetic cockpit, the flight display was manipulated to test whether changing the visual reference frame would alter OKCR. METHODS: Eight subjects (five rated pilots) flew a route in simulated visual meteorological conditions that required them to bank the aircraft frequently. Pilots' head tilt was characterized using both the conventional method of regressing against simultaneous aircraft bank, and also an event-based analysis, which identified head movements before, during, and after each turn. Three display configurations were compared to determine whether pilots' orientation would ever migrate from the horizon to the aircraft symbol. The first was a conventional "Inside-Out" condition. A "Frequency-Separated" condition combined Inside-Out horizon geometry with Outside-In dynamics for the aircraft symbol, which depicted joystick bank inputs. In the "Outside-In" condition, the aircraft symbol rolled against a static horizon. RESULTS: Regressions identified an interaction (p < 0.001) between display condition and aircraft bank: head tilt followed horizon tilt in Inside-Out and Frequency-Separated conditions, while remaining mostly level in the Outside-In condition. The event-based analysis identified anticipatory head movements in Inside-Out and Frequency-Separated conditions: 95% CI indicated that before each turn, head tilt favored the direction of the imminent bank. DISCUSSION: While the conventional analysis confirmed that the horizon comprises a primary spatial reference, the finer-grained event-based analysis indicated that pilots' reference can migrate at least temporarily to the vehicle, and that OKCR can be preceded by anticipatory head movements in the opposite direction.


Subject(s)
Aerospace Medicine , Head Movements/physiology , Nystagmus, Optokinetic/physiology , Reflex, Vestibulo-Ocular/physiology , Reflex/physiology , Vision Disorders , Accidents, Aviation/prevention & control , Adult , Aircraft , Aviation , Humans , Male , Middle Aged , Military Personnel , Space Perception/physiology , Spatial Behavior/physiology , Task Performance and Analysis , User-Computer Interface , Visual Perception/physiology
11.
Optom Vis Sci ; 81(7): 516-24, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15252351

ABSTRACT

PURPOSE: Photorefractive keratectomy (PRK) may be an alternative to spectacle and contact lens wear for United States Air Force (USAF) aircrew and may offer some distinct advantages in operational situations. However, any residual corneal haze or scar formation from PRK could exacerbate the disabling effects of a bright glare source on a complex visual task. The USAF recently completed a longitudinal clinical evaluation of the long-term effects of PRK on visual performance, including the experiment described herein. METHODS: After baseline data were collected, 20 nonflying active duty USAF personnel underwent PRK. Visual performance was then measured at 6, 12, and 24 months after PRK. Visual acuity (VA) and contrast sensitivity (CS) data were collected by using the Freiburg Acuity and Contrast Test (FrACT), with the subject viewing half of the runs through a polycarbonate windscreen. Experimental runs were completed under 3 glare conditions: no glare source and with either a broadband or a green laser (532-nm) glare annulus (luminance approximately 6090 cd/m) surrounding the Landolt C stimulus. RESULTS: Systematic effects of PRK on VA relative to baseline were not identified. However, VA was almost 2 full Snellen lines worse with the laser glare source in place versus the broadband glare source. A significant drop-off was observed in CS performance after PRK under conditions of no glare and broadband glare; this was the case both with and without the windscreen. As with VA, laser glare disrupted CS performance significantly and more than broadband glare did. CONCLUSIONS: PRK does not appear to have affected VA, but the changes in CS might represent a true decline in visual performance. The greater disruptive effects from laser versus broadband glare may be a result of increased masking from coherent spatial noise (speckle) surrounding the laser stimulus.


Subject(s)
Contrast Sensitivity/physiology , Myopia/surgery , Photorefractive Keratectomy , Vision Tests/methods , Visual Acuity/physiology , Adult , Cornea/surgery , Female , Glare , Humans , Lasers, Excimer , Male , Middle Aged , Military Personnel , United States
12.
Psychol Sci ; 14(2): 158-63, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12661678

ABSTRACT

Results from two experiments suggest that stereotype-threat effects are special cases of a more general process involving the need to maintain or enhance status. We hypothesized that situations capable of confirming a performance stereotype might represent either a threat to status or an opportunity for enhancement of status, depending on the nature of the stereotype. The positive relationship between baseline testosterone and status sensitivity led us to hypothesize that high testosterone levels in males and females would amplify existing performance expectations when gender-based math-performance stereotypes were activated. In Study 1, high-testosterone females performed poorly on a math test when a negative performance stereotype was primed. In Study 2, high-testosterone males excelled on a math test when a positive performance stereotype was primed. The moderating effect of testosterone on performance suggests that a stereotype-relevant situation is capable of conferring either a loss or a gain of status on targets of the stereotype.


Subject(s)
Gender Identity , Intelligence/physiology , Problem Solving/physiology , Stereotyping , Testosterone/blood , Adolescent , Adult , Dominance-Subordination , Female , Humans , Male , Personality Inventory , Self Concept
13.
Exp Brain Res ; 143(1): 78-88, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11907693

ABSTRACT

In a positron emission tomography (PET) study, a very large visual display was used to simulate continuous observer roll, yaw, and linear movement in depth. A global analysis based on all three experiments identified brain areas that responded to the three conditions' shared characteristic of coherent, wide-field motion versus incoherent motion. Several areas were identified, in the posterior-inferior temporal cortex (Brodmann area 37), paralimbic cortex, pulvinar, and midbrain tegmentum. In addition, occipital region KO was sensitive to roll and expansion but not yaw (i.e., coherent displays containing differential flow). Continuous ambient motion did not activate V5/MT selectively. The network of sites responding specifically to coherent motion contrasted with the extensive, contiguous activation that both coherent and incoherent motion elicited in visual areas V1, V2, and V3. The coherent motion mechanisms, furthermore, extended beyond the traditional dorsal pathway proposed to account for visual motion processing, and included subcortical and limbic structures, which are implicated in polysensory processing, posture regulation, and arousal.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Motion Perception/physiology , Nerve Net/diagnostic imaging , Nerve Net/physiology , Visual Pathways/diagnostic imaging , Visual Pathways/physiology , Adult , Brain Mapping , Female , Functional Laterality/physiology , Humans , Male , Photic Stimulation , Tomography, Emission-Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...