Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neuroergon ; 5: 1357905, 2024.
Article in English | MEDLINE | ID: mdl-38464394

ABSTRACT

Introduction: Real-time physiological episode (PE) detection and management in aircrew operating high-performance aircraft (HPA) is crucial for the US Military. This paper addresses the unique challenges posed by high acceleration (G-force) in HPA aircrew and explores the potential of a novel wearable functional near-infrared spectroscopy (fNIRS) system, named NIRSense Aerie, to continuously monitor cerebral oxygenation during high G-force exposure. Methods: The NIRSense Aerie system is a flight-optimized, wearable fNIRS device designed to monitor tissue oxygenation 13-20 mm below the skin's surface. The system includes an optical frontend adhered to the forehead, an electronics module behind the earcup of aircrew helmets, and a custom adhesive for secure attachment. The fNIRS optical layout incorporates near-distance, middle-distance, and far-distance infrared emitters, a photodetector, and an accelerometer for motion measurements. Data processing involves the modified Beer-Lambert law for computing relative chromophore concentration changes. A human evaluation of the NIRSense Aerie was conducted on six subjects exposed to G-forces up to +9 Gz in an Aerospace Environmental Protection Laboratory centrifuge. fNIRS data, pulse oximetry, and electrocardiography (HR) were collected to analyze cerebral and superficial tissue oxygenation kinetics during G-loading and recovery. Results: The NIRSense Aerie successfully captured cerebral deoxygenation responses during high G-force exposure, demonstrating its potential for continuous monitoring in challenging operational environments. Pulse oximetry was compromised during G-loading, emphasizing the system's advantage in uninterrupted cerebrovascular monitoring. Significant changes in oxygenation metrics were observed across G-loading levels, with distinct responses in Deoxy-Hb and Oxy-Hb concentrations. HR increased during G-loading, reflecting physiological stress and the anti-G straining maneuver. Discussion: The NIRSense Aerie shows promise for real-time monitoring of aircrew physiological responses during high G-force exposure. Despite challenges, the system provides valuable insights into cerebral oxygenation kinetics. Future developments aim for miniaturization and optimization for enhanced aircrew comfort and wearability. This technology has potential for improving anti-G straining maneuver learning and retention through real-time cerebral oxygenation feedback during centrifuge training.

2.
Aerosp Med Hum Perform ; 88(7): 617-626, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28641678

ABSTRACT

BACKGROUND: Hypoxia continues to present risks in military aviation. Hypoxia symptoms include sensory and cognitive effects; of these, it is important to identify which components of operator performance are most vulnerable to hypoxia-induced decline in order to determine which sensory modality is most effective for alerting an impaired aviator of an imminent hypoxic episode. METHODS: A study was performed in a hypobaric chamber to characterize deterioration of cognitive performance under moderate (MH) and severe (SH) hypoxia conditions, culminating in subjects' inability to perform tasks. Subjects operated a synthetic workstation, performing multiple simultaneous tasks during hypobaric exposures equivalent to 5486 m (18,000 ft) MH and 7620 m (25,000 ft) SH ascents. Performance was compared across baseline, altitude exposure, and recovery periods within MH vs. SH altitude profiles. Ascents lasted until at least one of a list of termination criteria was met, at which point the chamber was returned to ground level pressure and the subject resumed workstation performance during recovery. RESULTS: SH conditions generated greater deficits than MH conditions, and these more severe effects hastened the termination of exposures (5 vs. 18 min mean duration, respectively). Workstation performance collapsed rapidly on SH exposure, with Mathematics and Auditory Monitoring tasks proving vulnerable to breakdown. In MH exposures, these tasks exhibited impaired accuracy (declining 11% and 9%, respectively) and speed, with declines in Auditory Monitoring lingering into recovery. DISCUSSION: The relative robustness of memory and visual monitoring vs. the vulnerability of mathematical and auditory processing suggest that care should be taken designing purely auditory cockpit hypoxia warning alerts.Beer JMA, Shender BS, Chauvin D, Dart TS, Fischer J. Cognitive deterioration in moderate and severe hypobaric hypoxia conditions. Aerosp Med Hum Perform. 2017; 88(7):617-626.


Subject(s)
Altitude , Cognitive Dysfunction/psychology , Hypoxia/psychology , Task Performance and Analysis , Adult , Aerospace Medicine , Auditory Perception , Cognitive Dysfunction/etiology , Female , Healthy Volunteers , Humans , Hypoxia/complications , Male , Mathematics , Military Personnel , Young Adult
3.
Aviat Space Environ Med ; 83(12): 1135-44, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23316541

ABSTRACT

INTRODUCTION: Experiments measured the effects of laser glare on visual orientation and motion perception. Laser stimuli were varied according to spectral composition and temporal presentation as subjects identified targets' tilt (Experiment 1) and movement (Experiment 2). The objective was to determine whether the glare parameters would alter visual disruption. METHODS: Three spectral profiles (monochromatic Green vs. polychromatic White vs. alternating Red-Green) were used to produce a ring of laser glare surrounding a target. Two experiments were performed to measure the minimum contrast required to report target orientation or motion direction. The temporal glare profile was also varied: the ring was illuminated either continuously or discontinuously. Time-averaged luminance of the glare stimuli was matched across all conditions. RESULTS: In both experiments, threshold (deltaL) values were approximately 0.15 log units higher in monochromatic Green than in polychromatic White conditions. In Experiment 2 (motion identification), thresholds were approximately 0.17 log units higher in rapidly flashing (6, 10, or 14 Hz) than in continuous exposure conditions. DISCUSSION: Monochromatic extended-source laser glare disrupted orientation and motion identification more than polychromatic glare. In the motion task, pulse trains faster than 6 Hz (but below flicker fusion) elevated thresholds more than continuous glare with the same time-averaged luminance. Under these conditions, alternating the wavelength of monochromatic glare over time did not aggravate disability relative to green-only glare. Repetitively flashing monochromatic laser glare induced occasional episodes of impaired motion identification, perhaps resulting from cognitive interference. Interference speckle might play a role in aggravating monochromatic glare effects.


Subject(s)
Aviation , Glare/adverse effects , Lasers/adverse effects , Motion Perception/physiology , Vision Disorders/etiology , Vision Disorders/physiopathology , Vision, Ocular/physiology , Adaptation, Ocular/physiology , Adult , Analysis of Variance , Contrast Sensitivity/physiology , Female , Humans , Linear Models , Male , Middle Aged , Photic Stimulation , Vision Tests/methods
4.
Optom Vis Sci ; 81(7): 516-24, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15252351

ABSTRACT

PURPOSE: Photorefractive keratectomy (PRK) may be an alternative to spectacle and contact lens wear for United States Air Force (USAF) aircrew and may offer some distinct advantages in operational situations. However, any residual corneal haze or scar formation from PRK could exacerbate the disabling effects of a bright glare source on a complex visual task. The USAF recently completed a longitudinal clinical evaluation of the long-term effects of PRK on visual performance, including the experiment described herein. METHODS: After baseline data were collected, 20 nonflying active duty USAF personnel underwent PRK. Visual performance was then measured at 6, 12, and 24 months after PRK. Visual acuity (VA) and contrast sensitivity (CS) data were collected by using the Freiburg Acuity and Contrast Test (FrACT), with the subject viewing half of the runs through a polycarbonate windscreen. Experimental runs were completed under 3 glare conditions: no glare source and with either a broadband or a green laser (532-nm) glare annulus (luminance approximately 6090 cd/m) surrounding the Landolt C stimulus. RESULTS: Systematic effects of PRK on VA relative to baseline were not identified. However, VA was almost 2 full Snellen lines worse with the laser glare source in place versus the broadband glare source. A significant drop-off was observed in CS performance after PRK under conditions of no glare and broadband glare; this was the case both with and without the windscreen. As with VA, laser glare disrupted CS performance significantly and more than broadband glare did. CONCLUSIONS: PRK does not appear to have affected VA, but the changes in CS might represent a true decline in visual performance. The greater disruptive effects from laser versus broadband glare may be a result of increased masking from coherent spatial noise (speckle) surrounding the laser stimulus.


Subject(s)
Contrast Sensitivity/physiology , Myopia/surgery , Photorefractive Keratectomy , Vision Tests/methods , Visual Acuity/physiology , Adult , Cornea/surgery , Female , Glare , Humans , Lasers, Excimer , Male , Middle Aged , Military Personnel , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...