Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Syst Biol ; 7: 551, 2011 Nov 22.
Article in English | MEDLINE | ID: mdl-22108793

ABSTRACT

Orchestration of signaling, photoreceptor structural integrity, and maintenance needed for mammalian vision remain enigmatic. By integrating three proteomic data sets, literature mining, computational analyses, and structural information, we have generated a multiscale signal transduction network linked to the visual G protein-coupled receptor (GPCR) rhodopsin, the major protein component of rod outer segments. This network was complemented by domain decomposition of protein-protein interactions and then qualified for mutually exclusive or mutually compatible interactions and ternary complex formation using structural data. The resulting information not only offers a comprehensive view of signal transduction induced by this GPCR but also suggests novel signaling routes to cytoskeleton dynamics and vesicular trafficking, predicting an important level of regulation through small GTPases. Further, it demonstrates a specific disease susceptibility of the core visual pathway due to the uniqueness of its components present mainly in the eye. As a comprehensive multiscale network, it can serve as a basis to elucidate the physiological principles of photoreceptor function, identify potential disease-associated genes and proteins, and guide the development of therapies that target specific branches of the signaling pathway.


Subject(s)
Light Signal Transduction , Protein Interaction Maps , Rhodopsin/chemistry , Rhodopsin/metabolism , Rod Cell Outer Segment/metabolism , Actin Cytoskeleton , Animals , Cell Communication , Proteome , Rhodopsin/genetics , Swine , Vision, Ocular , Visual Pathways
2.
Anal Bioanal Chem ; 389(4): 1033-45, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17680235

ABSTRACT

One third of all genes of various organisms encode membrane proteins, emphasizing their crucial cellular role. However, due to their high hydrophobicity, membrane proteins demonstrate low solubility and a high tendency for aggregation. Indeed, conventional two-dimensional gel electrophoresis (2-DE), a powerful electrophoretic method for the separation of complex protein samples that applies isoelectric focusing (IEF) in the first dimension and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, has a strong bias against membrane proteins. This review describes two-dimensional electrophoretic techniques that can be used to separate membrane proteins. Alternative methods for performing conventional 2-DE are highlighted; these involve replacing the IEF with electrophoresis using cationic detergents, namely 16-benzyldimethyl-n-hexadecylammonium chloride (16-BAC) and cetyl trimethyl ammonium bromide (CTAB), or the anionic detergent SDS. Finally, the separation of native membrane protein complexes through the application of blue and clear native gel electrophoresis (BN/CN-PAGE) is reviewed, as well as the free-flow electrophoresis (FFE) of membranes.


Subject(s)
Membrane Proteins/isolation & purification , Proteomics/methods , Cell Fractionation/methods , Detergents/chemistry , Electrophoresis, Gel, Two-Dimensional/methods , Electrophoresis, Polyacrylamide Gel/methods , Isoelectric Focusing/methods , Membrane Proteins/analysis , Proteome/analysis , Proteome/isolation & purification
3.
Nat Genet ; 39(7): 889-95, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17546029

ABSTRACT

Leber congenital amaurosis (LCA) causes blindness or severe visual impairment at or within a few months of birth. Here we show, using homozygosity mapping, that the LCA5 gene on chromosome 6q14, which encodes the previously unknown ciliary protein lebercilin, is associated with this disease. We detected homozygous nonsense and frameshift mutations in LCA5 in five families affected with LCA. In a sixth family, the LCA5 transcript was completely absent. LCA5 is expressed widely throughout development, although the phenotype in affected individuals is limited to the eye. Lebercilin localizes to the connecting cilia of photoreceptors and to the microtubules, centrioles and primary cilia of cultured mammalian cells. Using tandem affinity purification, we identified 24 proteins that link lebercilin to centrosomal and ciliary functions. Members of this interactome represent candidate genes for LCA and other ciliopathies. Our findings emphasize the emerging role of disrupted ciliary processes in the molecular pathogenesis of LCA.


Subject(s)
Eye Proteins/genetics , Microtubule-Associated Proteins/genetics , Optic Atrophy, Hereditary, Leber/genetics , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Cilia/genetics , Codon, Nonsense , Eye Proteins/metabolism , Female , Frameshift Mutation , Humans , Male , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Molecular Sequence Data , Pedigree , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...