Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 93(11): 113906, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461439

ABSTRACT

We present a scheme for the full integration of terahertz (THz) frequency quantum cascade lasers (QCLs) within a dilution refrigerator in order to provide a directed delivery of THz power into the sample space. We describe a successful operation of a 2.68 THz QCL located on the pulse tube cooler stage of the refrigerator, with its output coupled onto a two-dimensional electron gas (2DEG) located on a milli-kelvin sample stage via hollow metal waveguides and Hysol thermal isolators, achieving a total loss from QCL to the sample of ∼-9 dB. The thermal isolators limit heat leaks to the sample space, with a base temperature of ∼210 mK being achieved. We observe cyclotron resonance (CR) induced in the 2DEG by the QCL and explore the heating impact of the QCL on all stages of the refrigerator. The CR effect induced by the THz QCL is observable at electron temperatures as low as ∼430 mK. The results show a viable route for the exploitation of THz QCLs within the environment of a dilution refrigerator and for the THz power delivery in very low-temperature (<0.5 K) condensed matter experiments.

2.
Phys Rev Lett ; 128(2): 027701, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35089765

ABSTRACT

Integrating the Kondo correlation and spin-orbit interactions, each of which have individually offered unprecedented means to manipulate electron spins, in a controllable way can open up new possibilities for spintronics. We demonstrate electrical control of the Kondo correlation by coupling the bound spin to leads with tunable Rashba spin-orbit interactions, realized in semiconductor quantum point contacts. We observe a transition from single to double peak zero-bias anomalies in nonequilibrium transport-the manifestation of the Kondo effect-indicating a controlled Kondo spin reversal using only spin-orbit interactions. Universal scaling of the Kondo conductance is demonstrated, implying that the spin-orbit interactions could enhance the Kondo temperature. A theoretical model based on quantum master equations is also developed to calculate the nonequilibrium quantum transport.

3.
J Phys Condens Matter ; 30(10): 105705, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29451866

ABSTRACT

InGaAs based devices are great complements to silicon for CMOS, as they provide an increased carrier saturation velocity, lower operating voltage and reduced power dissipation (International technology roadmap for semiconductors (www.itrs2.net)). In this work we show that In0.75Ga0.25As quantum wells with a high mobility, 15 000 to 20 000 cm2 V-1 s-1 at ambient temperature, show an InAs-like phonon with an energy of 28.8 meV, frequency of 232 cm-1 that dominates the polar-optical mode scattering from ∼70 K to 300 K. The measured optical phonon frequency is insensitive to the carrier density modulated with a surface gate or LED illumination. We model the electron scattering mechanisms as a function of temperature and identify mechanisms that limit the electron mobility in In0.75Ga0.25As quantum wells. Background impurity scattering starts to dominate for temperatures <100 K. In the high mobility In0.75Ga0.25As quantum well, GaAs-like phonons do not couple to the electron gas unlike the case of In0.53Ga0.47As quantum wells.

4.
Sci Rep ; 7(1): 7657, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28794444

ABSTRACT

Active control of the amplitude and frequency of terahertz sources is an essential prerequisite for exploiting a myriad of terahertz applications in imaging, spectroscopy, and communications. Here we present a optoelectronic, external modulation technique applied to a terahertz quantum cascade laser which holds the promise of addressing a number of important challenges in this research area. A hybrid metamaterial/graphene device is implemented into an external cavity set-up allowing for optoelectronic tuning of feedback into a quantum cascade laser. We demonstrate powerful, all-electronic, control over the amplitude and frequency of the laser output. Full laser switching is performed by electrostatic gating of the metamaterial/graphene device, demonstrating a modulation depth of 100%. External control of the emission spectrum is also achieved, highlighting the flexibility of this feedback method. By taking advantage of the frequency dispersive reflectivity of the metamaterial array, different modes of the QCL output are selectively suppressed using lithographic tuning and single mode operation of the multi-mode laser is enforced. Side mode suppression is electrically modulated from ~6 dB to ~21 dB, demonstrating active, optoelectronic modulation of the laser frequency content between multi-mode and single mode operation.

5.
Nat Commun ; 8: 15997, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28691707

ABSTRACT

The spatial separation of electron spins followed by the control of their individual spin dynamics has recently emerged as an essential ingredient in many proposals for spin-based technologies because it would enable both of the two spin species to be simultaneously utilized, distinct from most of the current spintronic studies and technologies wherein only one spin species could be handled at a time. Here we demonstrate that the spatial spin splitting of a coherent beam of electrons can be achieved and controlled using the interplay between an external magnetic field and Rashba spin-orbit interaction in semiconductor nanostructures. The technique of transverse magnetic focusing is used to detect this spin separation. More notably, our ability to engineer the spin-orbit interactions enables us to simultaneously manipulate and probe the coherent spin dynamics of both spin species and hence their correlation, which could open a route towards spintronics and spin-based quantum information processing.

6.
Sci Rep ; 6: 19325, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26758959

ABSTRACT

Laser cavities have been realized in various different photonic systems. One of the forefront research fields regards the investigation of the physics of amplifying random optical media. The random laser is a fascinating concept because, further to the fundamental research investigating light transport into complex media, it allows us to obtain non-conventional spectral distribution and angular beam emission patterns not achievable with conventional approaches. Even more intriguing is the possibility to engineer a priori the optical properties of a disordered distribution in an amplifying medium. We demonstrate here the realization of a terahertz quantum cascade laser in an isotropic hyperuniform disordered distribution exhibiting unique features, such as the presence of a photonic band gap, low threshold current density, unconventional angular emission and optical bistability.

7.
Opt Express ; 24(26): 30002-30014, 2016 Dec 26.
Article in English | MEDLINE | ID: mdl-28059385

ABSTRACT

The field of terahertz (THz) waveguides continues to grow rapidly, with many being tailored to suit the specific demands of a particular final application. Here, we explore waveguides capable of enabling efficient and accurate power delivery within cryogenic environments (< 4 K). The performance of extruded hollow cylindrical metal waveguides made of un-annealed and annealed copper, as well as stainless steel, have been investigated for bore diameters between 1.75 - 4.6 mm, and at frequencies of 2.0, 2.85 and 3.4 THz, provided by a suitable selection of THz quantum cascade lasers. The annealed copper resulted in the lowest transmission losses, < 3 dB/m for a 4.6 mm diameter waveguide, along with 90° bending losses as low as ~2 dB for a bend radius of 15.9 mm. The observed trends in losses were subsequently analyzed and related to measured inner surface roughness parameters. These results provide a foundation for the development of a wide array of demanding low-temperature THz applications, and enabling the study of fundamental physics.

8.
Opt Express ; 23(20): 26276-87, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26480141

ABSTRACT

The growth in terahertz frequency applications utilising the quantum cascade laser is hampered by a lack of targeted power delivery solutions over large distances (>100 mm). Here we demonstrate the efficient coupling of double-metal quantum cascade lasers into flexible polystyrene lined hollow metallic waveguides via the use of a hollow copper waveguide integrated into the laser mounting block. Our approach exhibits low divergence, Gaussian-like emission, which is robust to misalignment error, at distances > 550 mm, with a coupling efficiency from the hollow copper waveguide into the flexible waveguide > 90%. We also demonstrate the ability to nitrogen purge the flexible waveguide, increasing the power transmission by up to 20% at 2.85 THz, which paves the way for future fibre based terahertz sensing and spectroscopy applications.

9.
Nat Nanotechnol ; 10(1): 35-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25531088

ABSTRACT

The spin field-effect transistor envisioned by Datta and Das opens a gateway to spin information processing. Although the coherent manipulation of electron spins in semiconductors is now possible, the realization of a functional spin field-effect transistor for information processing has yet to be achieved, owing to several fundamental challenges such as the low spin-injection efficiency due to resistance mismatch, spin relaxation and the spread of spin precession angles. Alternative spin transistor designs have therefore been proposed, but these differ from the field-effect transistor concept and require the use of optical or magnetic elements, which pose difficulties for incorporation into integrated circuits. Here, we present an all-electric and all-semiconductor spin field-effect transistor in which these obstacles are overcome by using two quantum point contacts as spin injectors and detectors. Distinct engineering architectures of spin-orbit coupling are exploited for the quantum point contacts and the central semiconductor channel to achieve complete control of the electron spins (spin injection, manipulation and detection) in a purely electrical manner. Such a device is compatible with large-scale integration and holds promise for future spintronic devices for information processing.

10.
Oncogene ; 34(10): 1312-22, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-24662819

ABSTRACT

The anti-apoptotic function and tumor-associated expression of heat-shock protein 70 (HSP70) is consistent with HSP70 functioning as a survival factor to promote tumorigenesis. However, its immunomodulatory activities to induce anti-tumor immunity predict the suppression of tumor growth. Using the Hsp70.1/3(-/-)(Hsp70(-/-)) mouse model, we observed that tumor-derived HSP70 was neither required for cellular transformation nor for in vivo tumor growth. Hsp70(-/-) murine embryonic fibroblasts (MEFs) were transformed by E1A/Ras and generated tumors in immunodeficient hosts as efficiently as wild-type (WT) transformants. Comparison of Bcr-Abl-mediated transformation of WT and Hsp70(-/-) bone marrow and progression of B-cell leukemogenesis in vivo revealed no differences in disease onset or survival rates, and Eµ-Myc-driven lymphoma in Hsp70(-/-) mice was phenotypically indistinguishable from that in WT Eµ-Myc mice. However, Hsp70(-/-) E1A/Ras MEFs generated significantly larger tumors than their WT counterparts in C57BL/6 J immune-competent hosts. Concurrent with this was a reduction in intra-tumoral infiltration of innate and adaptive immune cells, including macrophages and CD8(+) T cells. Evaluation of several potential mechanisms revealed an HSP70-chemokine-like activity to promote cellular migration. These observations support a role for tumor-derived HSP70 in facilitating anti-tumor immunity to limit tumor growth and highlight the potential consequences of anti-HSP70 therapy as an efficacious anti-cancer strategy.


Subject(s)
HSP70 Heat-Shock Proteins/genetics , Neoplasms/genetics , Neoplasms/immunology , Animals , Cell Line , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Fusion Proteins, bcr-abl/genetics , Gene Expression , Gene Knockdown Techniques , Genes, myc , HSP70 Heat-Shock Proteins/metabolism , Mice , Mice, Knockout , Neoplasms/metabolism , Neoplasms/pathology , Oncogenes/genetics , Tumor Burden
11.
Nat Commun ; 5: 5679, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25477044

ABSTRACT

Fluctuations around an antiferromagnetic quantum critical point (QCP) are believed to lead to unconventional superconductivity and in some cases to high-temperature superconductivity. However, the exact mechanism by which this occurs remains poorly understood. The iron-pnictide superconductor BaFe2(As(1-x)P(x))2 is perhaps the clearest example to date of a high-temperature quantum critical superconductor, and so it is a particularly suitable system to study how the quantum critical fluctuations affect the superconducting state. Here we show that the proximity of the QCP yields unexpected anomalies in the superconducting critical fields. We find that both the lower and upper critical fields do not follow the behaviour, predicted by conventional theory, resulting from the observed mass enhancement near the QCP. Our results imply that the energy of superconducting vortices is enhanced, possibly due to a microscopic mixing of antiferromagnetism and superconductivity, suggesting that a highly unusual vortex state is realized in quantum critical superconductors.

12.
Opt Express ; 22(20): 24439-49, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25322020

ABSTRACT

We present the realization of a compact, monolithically integrated arrangement of terahertz quantum cascade lasers with hollow metallic cylindrical waveguides. By directly mounting a copper pipe to the end facet of a double metal waveguide, it was possible to significantly improve the far field emission from such a sub-wavelength plasmonic mode, while preserving the characteristic performance of the laser. Careful alignment of the quantum cascade laser and the hollow waveguide is required in order to prevent the excitation of higher order/mixed modes as predicted with a high degree of accuracy by a theoretical model. Finally, this approach proved to be a superior method of beam shaping when compared to other in situ arrangements, such as a silicon hyper-hemispherical lens glued to the facet, which are presented.

13.
Opt Express ; 22(3): 3234-43, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24663615

ABSTRACT

We characterise THz output of lateral photo-Dember (LPD) emitters based on semi-insulating (SI), unannealed and annealed low temperature grown (LTG) GaAs. Saturation of THz pulse power with optical fluence is observed, with unannealed LTG GaAs showing highest saturation fluence at 1.1 ± 0.1 mJ cm(-2). SI-GaAs LPD emitters show a flip in signal polarity with optical fluence that is attributed to THz emission from the metal-semiconductor contact. Variation in optical polarisation affects THz pulse power that is attributed to a local optical excitation near the metal contact.

14.
Opt Express ; 21(14): 16263-72, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23938477

ABSTRACT

Pulses of coherent terahertz radiation can be efficiently generated by a lateral diffusion current after ultrafast generation of photo-carriers near a metal interface on the surface of a semiconductor, this is known as the lateral photo-Dember effect. We investigate how the emission depends on the pump spot position, size, power and how it is affected by the application of an applied external bias. We study the role of the metallic mask and how it suppresses emission from the carriers diffusing under it due to a reduction of available radiation states both theoretically and experimentally.


Subject(s)
Lighting/instrumentation , Metals/chemistry , Models, Theoretical , Semiconductors , Surface Plasmon Resonance/instrumentation , Terahertz Radiation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
15.
Opt Express ; 21(11): 13748-57, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23736628

ABSTRACT

We study the time dependence of the optical power emitted by terahertz and mid-IR quantum cascade lasers in presence of optical reinjection and demonstrate unprecedented continuous wave (CW) emission stability for strong feedback. We show that the absence of coherence collapse or other CW instabilities typical of diode lasers is inherently associated with the high value of the photon to carrier lifetime ratio and the negligible linewidth enhancement factor of quantum cascade lasers.

16.
Opt Express ; 20(19): 20855-62, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-23037209

ABSTRACT

A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.

17.
Nat Commun ; 3: 1040, 2012.
Article in English | MEDLINE | ID: mdl-22948822

ABSTRACT

Optical frequency comb synthesizers have represented a revolutionary approach to frequency metrology, providing a grid of frequency references for any laser emitting within their spectral coverage. Extending the metrological features of optical frequency comb synthesizers to the terahertz domain would be a major breakthrough, due to the widespread range of accessible strategic applications and the availability of stable, high-power and widely tunable sources such as quantum cascade lasers. Here we demonstrate phase-locking of a 2.5 THz quantum cascade laser to a free-space comb, generated in a LiNbO(3) waveguide and covering the 0.1-6 THz frequency range. We show that even a small fraction (<100 nW) of the radiation emitted from the quantum cascade laser is sufficient to generate a beat note suitable for phase-locking to the comb, paving the way to novel metrological-grade terahertz applications, including high-resolution spectroscopy, manipulation of cold molecules, astronomy and telecommunications.

18.
Opt Express ; 20(8): 8898-906, 2012 Apr 09.
Article in English | MEDLINE | ID: mdl-22513600

ABSTRACT

Terahertz (THz) radiation can be generated by ultrafast photo-excitation of carriers in a semiconductor partly masked by a gold surface. A simulation of the effect taking into account the diffusion of carriers and the electric field shows that the total net current is approximately zero and cannot account for the THz radiation. Finite element modelling and analytic calculations indicate that the THz emission arises because the metal inhibits the radiation from part of the dipole population, thus creating an asymmetry and therefore a net current. Experimental investigations confirm the simulations and show that metal-mask dipole inhibition can be used to create THz emitters.

19.
Nano Lett ; 11(8): 3147-50, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21714512

ABSTRACT

We present resistively detected NMR measurements in induced and modulation-doped electron quantum point contacts, as well as induced hole quantum point contacts. While the magnitude of the resistance change and associated NMR peaks in n-type devices is in line with other recent measurements using this technique, the effect in p-type devices is too small to measure. This suggests that the hyperfine coupling between holes and nuclei in this type of device is much smaller than the electron hyperfine coupling, which could have implications in quantum information processing.

20.
Cell Death Differ ; 17(6): 1034-46, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20150914

ABSTRACT

Heat shock transcription factor-1 (HSF-1) is the primary stress responsive transcription factor that regulates expression of heat shock proteins (Hsps) in response to elevated temperature. We show that the transcriptional activity of HSF-1 can also directly mediate hyperthermia-induced Fas ligand (FasL) expression in activated T cells. We identify a conserved region within the human FasL promoter spanning from -276 to -236 upstream of the translational start site that contains two 15 bp non-identical adjacent HSF-1-binding sites or heat shock elements (HSEs) separated by 11 bp. Both the distal HSE (HSE1) (extending from -276 to -262) and the proximal HSE (HSE2) (spanning from -250 to -236) consist of two perfect and one imperfect nGAAn pentamers. We show the direct binding of HSF-1 to these elements and that mutation of these sites abrogates the ability of HSF-1 to bind and drive promoter activity. HSF-1 associates with these elements in a cooperative manner to mediate optimal promoter activity. We propose that the ability of HSF-1 to mediate stress-inducible expression of FasL extends its classical function as a regulator of Hsps to encompass a function for this transcription factor in the regulation of immune function and homeostasis.


Subject(s)
DNA-Binding Proteins/metabolism , Fas Ligand Protein/genetics , Heat-Shock Response/genetics , Transcription Factors/metabolism , Transcriptional Activation , Binding Sites , Cell Death , Fas Ligand Protein/biosynthesis , HSP70 Heat-Shock Proteins/genetics , Heat Shock Transcription Factors , Humans , Jurkat Cells , Lymphocyte Activation , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...