Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 1026, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36658277

ABSTRACT

Dengue virus (DENV) infection has increased worldwide, with over 400 million infections annually, and has become a serious public health concern. Several drug candidates, new and repurposed, have failed to meet the primary efficacy endpoints. We have recently shown that Aqueous Extract of the stem of Cocculus hirsutus (AQCH) was effective in vitro and in vivo against DENV and was safe in humans. We now report that an active ingredient of AQCH, Sinococuline, protects against the antibody-mediated secondary-DENV infection in the AG129 mouse model. DENV infection markers were assessed, viz. serum viremia and vital organs pathologies-viral load, proinflammatory cytokines and intestinal vascular leakage. The treatment with Sinococuline at 2.0 mg/kg/day; BID (twice a day), was the most effective in protecting the severely DENV-infected AG129 mice. Also, this dose effectively reduced serum viremia and tissue-viral load and inhibited the elevated expression levels of proinflammatory cytokines (TNF-α and IL-6) in several vital organs. Based on these findings, it could be explored further for pre-clinical and clinical developments for the treatment of dengue.


Subject(s)
Cocculus , Dengue Virus , Morphinans , Animals , Humans , Mice , Cocculus/chemistry , Cytokines/metabolism , Dengue Virus/drug effects , Disease Models, Animal , Viremia/drug therapy , Morphinans/pharmacology
2.
Front Microbiol ; 12: 746110, 2021.
Article in English | MEDLINE | ID: mdl-34912307

ABSTRACT

Dengue is a serious public health concern worldwide, with ∼3 billion people at risk of contracting dengue virus (DENV) infections, with some suffering severe consequences of disease and leading to death. Currently, there is no broad use vaccine or drug available for the prevention or treatment of dengue, which leaves only anti-mosquito strategies to combat the dengue menace. The present study is an extension of our earlier study aimed at determining the in vitro and in vivo protective effects of a plant-derived phytopharmaceutical drug for the treatment of dengue. In our previous report, we had identified a methanolic extract of aerial parts of Cissampelos pareira to exhibit in vitro and in vivo anti-dengue activity against all the four DENV serotypes. The dried aerial parts of C. pareira supplied by local vendors were often found to be mixed with aerial parts of another plant of the same Menispermaceae family, Cocculus hirsutus, which shares common homology with C. pareira. In the current study, we have found C. hirsutus to have more potent anti-dengue activity as compared with C. pareira. The stem part of C. hirsutus was found to be more potent (∼25 times) than the aerial part (stem and leaf) irrespective of the extraction solvent used, viz., denatured spirit, hydro-alcohol (50:50), and aqueous. Moreover, the anti-dengue activity of stem extract in all the solvents was comparable. Hence, an aqueous extract of the stem of C. hirsutus (AQCH) was selected due to greater regulatory compliance. Five chemical markers, viz., Sinococuline, 20-Hydroxyecdysone, Makisterone-A, Magnoflorine, and Coniferyl alcohol, were identified in fingerprinting analysis. In a test of primary dengue infection in the AG129 mice model, AQCH extract at 25 mg/kg body weight exhibited protection when administered four and three times a day. The AQCH was also protective in the secondary DENV-infected AG129 mice model at 25 mg/kg/dose when administered four and three times a day. Additionally, the AQCH extract reduced serum viremia and small intestinal pathologies, viz., viral load, pro-inflammatory cytokines, and vascular leakage. Based on these findings, we have undertaken the potential preclinical development of C. hirsutus-based phytopharmaceutical, which could be studied further for its clinical development for treating dengue.

3.
Virus Res ; 304: 198527, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34339773

ABSTRACT

Dengue, a mosquito-borne viral disease, caused by any of four serotypes of dengue viruses (DENV-1, -2, -3 and -4), is estimated to affect >1 million of the world's population daily. We showed earlier that a recombinant human adenovirus type 5 (HuAd5) vector, encoding a short hairpin RNA (shRNA), targeting a conserved sequence in the DENV genome, could effectively suppress pre-established DENV-2 infection in Vero cells. In this study, we identified an additional conserved shRNA target in the DENV genome, developed a HuAd5 vector to target this site, and evaluated if HuAd5-delivered shRNAs suppress pre-established infection by the remaining three DENV serotypes, not only in Vero cells, but also in macrophages, the in vivo sites of DENV replication in infected individuals. We also assessed the effect of anti-HuAd5 antibodies on shRNA delivery. We show that recombinant HuAd5 vectors, encoding shRNAs targeting conserved DENV genomic sequences, in the 5' non-translated region and capsid gene, can suppress ongoing replication of all four prototypic DENV serotypes in Vero cells and in a HuAd5-refractory human macrophage cell line expressing a DENV attachment factor. DENV suppression was assessed on the basis of inhibition of viral antigen secretion, viral RNA replication and progeny virus generation. Interestingly, HuAd5 vector-mediated DENV suppression in the macrophage cell line was dependent on the presence of anti-HuAd5 antibody. This suggests that HuAd5 vector complexed to its antibody enters these cells through the Fc receptor pathway. This may have implications for specific targeting of HuAd5 vector-mediated antiviral RNA interference therapy to macrophages.


Subject(s)
Dengue Virus , Dengue , Adenoviridae/genetics , Animals , Capsid , Cell Line , Chlorocebus aethiops , Dengue Virus/physiology , Humans , Myeloid Cells , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Vero Cells , Virus Replication
4.
EBioMedicine ; 60: 102991, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32949997

ABSTRACT

BACKGROUND: A tetravalent live attenuated dengue vaccine, Dengvaxia, sensitised naïve recipients to severe dengue illness upon a subsequent natural dengue infection and is suspected to be due to antibody-dependent enhancement (ADE). ADE has also been implicated in the severe neurological outcomes of Zika virus (ZIKV) infection. It has become evident that cross-reactive antibodies targeting the viral pre-membrane protein and fusion-loop epitope are ADE-competent. A pre-clinical tetravalent dengue sub-unit vaccine candidate, DSV4, eliminates these ADE-competent epitopes. METHODS: We compared protective efficacy and ADE-competence of murine polyclonal antibodies induced by DSV4, Dengvaxia and an 'in house' tetravalent mixture of all four laboratory DENV strains, TV DENV, using established mouse models. FINDINGS: DSV4-induced antibodies, known to be predominantly type-specific, provided significant protection against lethal DENV challenge, but did not promote ADE of either DENV or ZIKV infection in vivo. Antibodies elicited by Dengvaxia and TV DENV, which are predominantly cross-reactive, not only failed to offer protection against lethal DENV challenge, but also promoted ADE of both DENV and ZIKV infection in vivo. INTERPRETATION: Protective efficacy against DENV infection may be linked to the induction of neutralising antibodies which are type-specific rather than cross-reactive. Whole virus-based dengue vaccines may be associated with ADE risk, despite their potent virus-neutralising capacity. Vaccines designed to eliminate ADE-competent epitopes may help eliminate/minimise ADE risk. FUNDING: This study was supported partly by ICGEB, India, the National Biopharma Mission, DBT, Government of India, Sun Pharmaceutical Industries Limited, India, and NIAID, NIH, USA.


Subject(s)
Cross Reactions/immunology , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Vaccines, Attenuated/immunology , Vaccines, Synthetic/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral , Dengue/immunology , Dengue/virology , Dengue Vaccines/genetics , Disease Models, Animal , Disease Progression , Epitopes/immunology , Humans , Immunization , Immunogenicity, Vaccine , Mice , Mice, Knockout , Vaccines, Synthetic/genetics , Viral Envelope Proteins/immunology , Viral Load , Zika Virus Infection/virology
5.
Virusdisease ; 31(3): 299-307, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32904896

ABSTRACT

Dengue virus (DENV), the causative agent of dengue fever and severe dengue, exists as four antigenically different serotypes. These serotypes are further classified into genotypes and have varying degrees of pathogenicity. The 5' and 3' ends of the genomic RNA play a critical role in the viral life cycle. A global scale study of the RNA structural variation among the sero- and genotypes was carried out to correlate RNA structure with pathogenicity. We found that the GC rich stem and rigid loop structure of the 5' end of the genomic RNA of DENV 2 differs significantly from the others. The observed variation in base composition and base pairing may confer structural and functional advantage in highly virulent strains. This variation in the structure may influence the ease of cyclization and recruitment of viral RNA polymerase, NS5 RdRp, thereby affecting the pathogenicity of these strains.

6.
Expert Rev Vaccines ; 18(2): 105-117, 2019 02.
Article in English | MEDLINE | ID: mdl-30587054

ABSTRACT

INTRODUCTION: A safe and efficacious vaccine for dengue continues to be an unmet public health need. The recent licensing of a dengue vaccine (Dengvaxia) developed by Sanofi has brought to the fore the safety issue of vaccine-induced infection enhancement. AREAS COVERED: This article focuses on two new yeast-produced tetravalent dengue envelope domain III-displaying virus-like particulate vaccine candidates reported in early 2018 and reviews the rationale underlying their design, and pre-clinical data which suggest that these may offer promising alternate options. EXPERT COMMENTARY: These are the only vaccine candidates so far to have demonstrated the induction of primarily serotype-specific neutralizing antibodies to all dengue virus serotypes in experimental animals. Interestingly, these antibodies lack infection-enhancing potential when evaluated using the AG129 mouse model.


Subject(s)
Dengue Vaccines/administration & dosage , Dengue/prevention & control , Vaccines, Virus-Like Particle/administration & dosage , Animals , Antibodies, Neutralizing/blood , Dengue Vaccines/immunology , Dengue Virus/immunology , Humans , Mice , Vaccines, Virus-Like Particle/immunology
7.
Antivir Ther ; 23(5): 385-394, 2018.
Article in English | MEDLINE | ID: mdl-29583121

ABSTRACT

BACKGROUND: The global occurrence of dengue, a mosquito-​borne viral disease caused by four distinct dengue viruses (DENV-1, -2, -3 and -4), is reported to have increased approximately 30-fold in the last 50 years, causing approximately 400 million infections a year. A limited use, sub-optimal live attenuated dengue vaccine has become available recently. It is becoming apparent that antibodies to DENVs can promote infection by Zika virus (ZIKV), a related mosquito-borne flavivirus. A drug to treat these flaviviral infections continues to be an unmet public health need. METHODS: We screened an 'in-house' library of approximately 2,000 small molecules for inhibitors of cloned DENV-2 protease. Putative inhibitor binding to DENV-2 protease was analysed by in silico docking. Anti-DENV activity was analysed by monitoring viral antigen synthesis by ELISA, viral RNA synthesis by reverse-transcription​ coupled to real-time polymerase chain reaction and infectious virus production by plaque assay, in DENV-infected Vero cells. RESULTS: A quinoline derivative, BT24, was identified for the first time as a potent inhibitor of the cloned DENV-2 protease (half maximal inhibitory concentration [IC50]=0.5 µM). In silico analysis revealed that BT24 binds to an allosteric site in the vicinity of the active site of DENV-2 protease. Cell-based assays demonstrated that BT24 can inhibit all four DENVs in infected Vero cells. CONCLUSIONS: BT24 is a DENV-2 protease inhibitor which manifests the capacity to inhibit the replication of all four DENVs in cultured cells. It may provide a lead for a pan-DENV inhibitory drug.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Protease Inhibitors/pharmacology , Quinolines/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , Animals , Antigens, Viral/immunology , Antiviral Agents/chemical synthesis , Binding Sites , Chlorocebus aethiops , Dengue Virus/enzymology , Dengue Virus/genetics , High-Throughput Screening Assays , Molecular Docking Simulation , Protease Inhibitors/chemical synthesis , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Quinolines/chemical synthesis , RNA Helicases/antagonists & inhibitors , RNA Helicases/genetics , RNA Helicases/metabolism , RNA, Viral/antagonists & inhibitors , RNA, Viral/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Serogroup , Structure-Activity Relationship , Vero Cells , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
8.
Expert Opin Investig Drugs ; 25(9): 1059-69, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27322111

ABSTRACT

INTRODUCTION: Dengue has emerged as the most significant arboviral disease of the current century. A drug for dengue is an urgent unmet need. As conventional drug discovery efforts have not produced any promising clinical candidates, there is a shift toward re-positioning pre-existing drugs for dengue to fast-track dengue drug development. AREAS COVERED: This article provides an update on the current status of recently completed and ongoing dengue drug trials. All dengue drug trials described in this article were identified from a list of >230 trials that were returned upon searching the World Health Organization's International Clinical Trials Registry Platform web portal using the search term 'dengue' on December 31(st), 2015. EXPERT OPINION: None of the handful of drugs tested so far has yielded encouraging results. Early trial experience has served to emphasize the challenge of drug testing in the short therapeutic time window available, the need for tools to predict 'high-risk' patients early on and the limitations of the existing pre-clinical model systems. Significant investment of efforts and resources is a must before the availability of a safe, effective and inexpensive dengue drug becomes a reality. Currently, supportive fluid therapy remains the only option available for dengue treatment.


Subject(s)
Antiviral Agents/therapeutic use , Dengue Virus/drug effects , Dengue/drug therapy , Drug Discovery , Drugs, Investigational/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Clinical Trials as Topic , Dengue/virology , Drug Discovery/economics , Drug Repositioning , Drugs, Investigational/administration & dosage , Drugs, Investigational/adverse effects , Humans , Treatment Outcome
9.
Virol J ; 12: 16, 2015 Feb 08.
Article in English | MEDLINE | ID: mdl-25886260

ABSTRACT

BACKGROUND: Dengue has emerged as the most significant of arboviral diseases in the 21st century. It is endemic to >100 tropical and sub-tropical countries around the world placing an estimated 3.6 billion people at risk. It is caused by four genetically similar but antigenically distinct, serotypes of dengue viruses. There is neither a vaccine to prevent nor a drug to treat dengue infections, at the present time. The major objective of this work was to explore the possibility of identifying a small molecule inhibitor of the dengue virus protease and assessing its ability to suppress viral replication in cultured cells. METHODS: We cloned, expressed and purified recombinant dengue virus type 2 protease. Using an optimized and validated fluorogenic peptide substrate cleavage assay to monitor the activity of this cloned dengue protease we randomly screened ~1000 small molecules from an 'in-house' library to identify potential dengue protease inhibitors. RESULTS: A benzimidazole derivative, named MB21, was found to be the most potent in inhibiting the cloned protease (IC50 = 5.95 µM). In silico docking analysis indicated that MB21 binds to the protease in the vicinity of the active site. Analysis of kinetic parameters of the enzyme reaction suggested that MB21 presumably functions as a mixed type inhibitor. Significantly, this molecule identified as an inhibitor of dengue type 2 protease was also effective in inhibiting each one of the four serotypes of dengue viruses in infected cells in culture, based on analysis of viral antigen synthesis and infectious virus production. Interestingly, MB21 did not manifest any discernible cytotoxicity. CONCLUSIONS: This work strengthens the notion that a single drug molecule can be effective against all four dengue virus serotypes. The molecule MB21 could be a potential candidate for 'hit-to-lead' optimization, and may pave the way towards developing a pan-dengue virus antiviral drug.


Subject(s)
Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Dengue Virus/drug effects , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Serine Endopeptidases/metabolism , Virus Replication/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/toxicity , Benzimidazoles/chemistry , Benzimidazoles/isolation & purification , Benzimidazoles/pharmacology , Benzimidazoles/toxicity , Cell Survival/drug effects , Chlorocebus aethiops , Dengue Virus/enzymology , Dengue Virus/physiology , Drug Evaluation, Preclinical , Kinetics , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/toxicity , Proteolysis , Serogroup , Vero Cells
10.
Expert Opin Ther Pat ; 24(11): 1171-84, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25283170

ABSTRACT

INTRODUCTION: Almost half the global population is estimated to be at risk of contracting dengue infection. Of the 400 million infections estimated to occur annually, 4 million can be potentially life-threatening leading to vascular leakage and shock. The only treatment available to severe dengue patients is fluid replacement therapy and supportive care. A drug for treating dengue is an urgent need. AREAS COVERED: This article endeavors to provide an overview of the experimental dengue drugs being developed around the world as reflected in the recent patent literature spanning the last few years (2010-2014). EXPERT OPINION: Dengue drug development is essentially in its infancy and currently hobbled by multiple factors including a poor understanding of the molecular mechanism of severe disease and lack of reliable small animal model for preclinical drug evaluation. More intense R&D coupled to setting up product development partnerships to facilitate the efficient movement of a drug molecule from the laboratory to the clinic is needed to make antiviral therapy for dengue a reality in the coming future.


Subject(s)
Antiviral Agents/therapeutic use , Dengue/drug therapy , Animals , Clinical Trials as Topic , Dengue/virology , Dengue Virus/drug effects , Humans , Patents as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...