Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant Biotechnol J ; 21(12): 2490-2506, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37578146

ABSTRACT

Coumarins can fight pathogens and are thus promising for crop protection. Their biosynthesis, however, has not yet been engineered in crops. We tailored the constitutive accumulation of coumarins in transgenic Nicotiana benthamiana, Glycine max and Arabidopsis thaliana plants, as well as in Nicotiana tabacum BY-2 suspension cells. We did so by overexpressing A. thaliana feruloyl-CoA 6-hydroxylase 1 (AtF6'H1), encoding the key enzyme of scopoletin biosynthesis. Besides scopoletin and its glucoside scopolin, esculin at low level was the only other coumarin detected in transgenic cells. Mechanical damage of scopolin-accumulating tissue led to a swift release of scopoletin, presumably from the scopolin pool. High scopolin levels in A. thaliana roots coincided with reduced susceptibility to the root-parasitic nematode Heterodera schachtii. In addition, transgenic soybean plants were more tolerant to the soil-borne pathogenic fungus Fusarium virguliforme. Because mycotoxin-induced accumulation of reactive oxygen species and cell death were reduced in the AtF6'H1-overexpressors, the weaker sensitivity to F. virguliforme may be caused by attenuated oxidative damage of coumarin-hyperaccumulating cells. Together, engineered coumarin accumulation is promising for enhanced disease resilience of crops.


Subject(s)
Arabidopsis , Mycotoxins , Arabidopsis/metabolism , Scopoletin/metabolism , Mycotoxins/metabolism , Disease Susceptibility/metabolism , Coumarins/metabolism , Oxidative Stress , Plant Roots/genetics , Plant Roots/metabolism
2.
Plant J ; 99(3): 397-413, 2019 08.
Article in English | MEDLINE | ID: mdl-31148306

ABSTRACT

The fungus Phakopsora pachyrhizi (Pp) causes Asian soybean rust (SBR) disease which provokes tremendous losses in global soybean production. Pp is mainly controlled with synthetic fungicides to which the fungus swiftly develops fungicide resistance. To substitute or complement synthetic fungicides in Asian soybean rust control, we aimed to identify antifungal metabolites in Arabidopsis which is not a host for Pp. Comparative transcriptional and metabolic profiling of the Pp-inoculated Arabidopsis non-host and the soybean host revealed induction of phenylpropanoid metabolism-associated genes in both species but activation of scopoletin biosynthesis only in the resistant non-host. Scopoletin is a coumarin and an antioxidant. In vitro experiments disclosed fungistatic activity of scopoletin against Pp, associated with reduced accumulation of reactive oxygen species (ROS) in fungal pre-infection structures. Non-antioxidant and antioxidant molecules including coumarins with a similar structure to scopoletin were inactive or much less effective at inhibiting fungal accumulation of ROS and germination of Pp spores. When sprayed onto Arabidopsis leaves, scopoletin also suppressed the formation of Pp pre-infection structures and penetration of the plant. However, scopoletin neither directly activated defence nor did it prime Arabidopsis for enhanced defence, therefore emphasizing fungistatic activity as the exclusive mode of action of scopoletin against Pp. Because scopletin also protected soybean from Pp infection, the coumarin may serve as a natural fungicide or as a lead for the development of near-to-nature fungicides against Asian soybean rust.


Subject(s)
Arabidopsis/genetics , Coumarins/metabolism , Glycine max/genetics , Plant Diseases/genetics , Scopoletin/metabolism , Arabidopsis/metabolism , Arabidopsis/microbiology , Disease Resistance/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Phakopsora pachyrhizi/physiology , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Glycine max/metabolism , Glycine max/microbiology
3.
Plant Physiol ; 176(3): 2395-2405, 2018 03.
Article in English | MEDLINE | ID: mdl-29288231

ABSTRACT

Modern crop production calls for agrochemicals that prime plants for enhanced defense. Reliable test systems for spotting priming-inducing chemistry, however, are rare. We developed an assay for the high-throughput search for compounds that prime microbial pattern-induced secretion of antimicrobial furanocoumarins (phytoalexins) in cultured parsley cells. The screen produced 1-isothiocyanato-4-methylsulfinylbutane (sulforaphane; SFN), a secondary metabolite in many crucifers, as a novel defense priming compound. While elucidating SFN's mode of action in defense priming, we found that in Arabidopsis (Arabidopsisthaliana) the isothiocyanate provokes covalent modification (K4me3, K9ac) of histone H3 in the promoter and promoter-proximal region of defense genes WRKY6 and PDF12, but not PR1 SFN-triggered H3K4me3 and H3K9ac coincide with chromatin unpacking in the WRKY6 and PDF12 regulatory regions, primed WRKY6 expression, unprimed PDF12 activation, and reduced susceptibility to downy mildew disease (Hyaloperonospora arabidopsidis). Because SFN also directly inhibits Harabidopsidis and other plant pathogens, the isothiocyanate is promising for the development of a plant protectant with a dual mode of action.


Subject(s)
Chromatin/drug effects , Gene Expression Regulation, Plant/drug effects , High-Throughput Screening Assays/methods , Histones/metabolism , Isothiocyanates/pharmacology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Chromatin/genetics , Chromatin/metabolism , Host-Pathogen Interactions/drug effects , Isothiocyanates/chemistry , Lysine/metabolism , Oomycetes/pathogenicity , Oxidation-Reduction , Petroselinum/cytology , Petroselinum/drug effects , Promoter Regions, Genetic/drug effects , Sesquiterpenes/metabolism , Sulfoxides , Sulfur/chemistry , Sulfur/metabolism , Transcription Factors/genetics , Phytoalexins
SELECTION OF CITATIONS
SEARCH DETAIL
...