Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Angiogenesis ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733496

ABSTRACT

Regenerative capabilities of the endothelium rely on vessel-resident progenitors termed endothelial colony forming cells (ECFCs). This study aimed to investigate if these progenitors are impacted by conditions (i.e., obesity or atherosclerosis) characterized by increased serum levels of oxidized low-density lipoprotein (oxLDL), a known inducer of Endothelial-to-Mesenchymal Transition (EndMT). Our investigation focused on understanding the effects of EndMT on the self-renewal capabilities of progenitors and the associated molecular alterations. In the presence of oxLDL, ECFCs displayed classical features of EndMT, through reduced endothelial gene and protein expression, function as well as increased mesenchymal genes, contractility, and motility. Additionally, ECFCs displayed a dramatic loss in self-renewal capacity in the presence of oxLDL. RNA-sequencing analysis of ECFCs exposed to oxLDL validated gene expression changes suggesting EndMT and identified SOX9 as one of the highly differentially expressed genes. ATAC sequencing analysis identified SOX9 binding sites associated with regions of dynamic chromosome accessibility resulting from oxLDL exposure, further pointing to its importance. EndMT phenotype and gene expression changes induced by oxLDL in vitro or high fat diet (HFD) in vivo were reversed by the silencing of SOX9 in ECFCs or the endothelial-specific conditional knockout of Sox9 in murine models. Overall, our findings support that EndMT affects vessel-resident endothelial progenitor's self-renewal. SOX9 activation is an early transcriptional event that drives the mesenchymal transition of endothelial progenitor cells. The identification of the molecular network driving EndMT in vessel-resident endothelial progenitors presents a new avenue in understanding and preventing a range of condition where this process is involved.

2.
Nucleic Acids Res ; 51(12): 6389-6410, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37144467

ABSTRACT

Single-cell RNAseq has allowed unprecedented insight into gene expression across different cell populations in normal tissue and disease states. However, almost all studies rely on annotated gene sets to capture gene expression levels and sequencing reads that do not align to known genes are discarded. Here, we discover thousands of long noncoding RNAs (lncRNAs) expressed in human mammary epithelial cells and analyze their expression in individual cells of the normal breast. We show that lncRNA expression alone can discriminate between luminal and basal cell types and define subpopulations of both compartments. Clustering cells based on lncRNA expression identified additional basal subpopulations, compared to clustering based on annotated gene expression, suggesting that lncRNAs can provide an additional layer of information to better distinguish breast cell subpopulations. In contrast, these breast-specific lncRNAs poorly distinguish brain cell populations, highlighting the need to annotate tissue-specific lncRNAs prior to expression analyses. We also identified a panel of 100 breast lncRNAs that could discern breast cancer subtypes better than protein-coding markers. Overall, our results suggest that lncRNAs are an unexplored resource for new biomarker and therapeutic target discovery in the normal breast and breast cancer subtypes.


Subject(s)
Breast Neoplasms , Breast , RNA, Long Noncoding , Female , Humans , Breast/cytology , Breast/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic
3.
Genome Biol ; 24(1): 59, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36991492

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) have identified > 200 loci associated with breast cancer risk. The majority of candidate causal variants are in non-coding regions and likely modulate cancer risk by regulating gene expression. However, pinpointing the exact target of the association, and identifying the phenotype it mediates, is a major challenge in the interpretation and translation of GWAS. RESULTS: Here, we show that pooled CRISPR screens are highly effective at identifying GWAS target genes and defining the cancer phenotypes they mediate. Following CRISPR mediated gene activation or suppression, we measure proliferation in 2D, 3D, and in immune-deficient mice, as well as the effect on DNA repair. We perform 60 CRISPR screens and identify 20 genes predicted with high confidence to be GWAS targets that promote cancer by driving proliferation or modulating the DNA damage response in breast cells. We validate the regulation of a subset of these genes by breast cancer risk variants. CONCLUSIONS: We demonstrate that phenotypic CRISPR screens can accurately pinpoint the gene target of a risk locus. In addition to defining gene targets of risk loci associated with increased breast cancer risk, we provide a platform for identifying gene targets and phenotypes mediated by risk variants.


Subject(s)
Genome-Wide Association Study , Neoplasms , Animals , Mice , Clustered Regularly Interspaced Short Palindromic Repeats , Genetic Predisposition to Disease , Phenotype , Polymorphism, Single Nucleotide
4.
NPJ Breast Cancer ; 8(1): 57, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35501337

ABSTRACT

Intratumoral heterogeneity is caused by genomic instability and phenotypic plasticity, but how these features co-evolve remains unclear. SOX10 is a neural crest stem cell (NCSC) specifier and candidate mediator of phenotypic plasticity in cancer. We investigated its relevance in breast cancer by immunophenotyping 21 normal breast and 1860 tumour samples. Nuclear SOX10 was detected in normal mammary luminal progenitor cells, the histogenic origin of most TNBCs. In tumours, nuclear SOX10 was almost exclusive to TNBC, and predicted poorer outcome amongst cross-sectional (p = 0.0015, hazard ratio 2.02, n = 224) and metaplastic (p = 0.04, n = 66) cases. To understand SOX10's influence over the transcriptome during the transition from normal to malignant states, we performed a systems-level analysis of co-expression data, de-noising the networks with an eigen-decomposition method. This identified a core module in SOX10's normal mammary epithelial network that becomes rewired to NCSC genes in TNBC. Crucially, this reprogramming was proportional to genome-wide promoter methylation loss, particularly at lineage-specifying CpG-island shores. We propose that the progressive, genome-wide methylation loss in TNBC simulates more primitive epigenome architecture, making cells vulnerable to SOX10-driven reprogramming. This study demonstrates potential utility for SOX10 as a prognostic biomarker in TNBC and provides new insights about developmental phenotypic mimicry-a major contributor to intratumoral heterogeneity.

5.
Sci Rep ; 11(1): 19787, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34611289

ABSTRACT

Breast cancer metastasis accounts for most of the deaths from breast cancer. Identification of germline variants associated with survival in aggressive types of breast cancer may inform understanding of breast cancer progression and assist treatment. In this analysis, we studied the associations between germline variants and breast cancer survival for patients with distant metastases at primary breast cancer diagnosis. We used data from the Breast Cancer Association Consortium (BCAC) including 1062 women of European ancestry with metastatic breast cancer, 606 of whom died of breast cancer. We identified two germline variants on chromosome 1, rs138569520 and rs146023652, significantly associated with breast cancer-specific survival (P = 3.19 × 10-8 and 4.42 × 10-8). In silico analysis suggested a potential regulatory effect of the variants on the nearby target genes SDE2 and H3F3A. However, the variants showed no evidence of association in a smaller replication dataset. The validation dataset was obtained from the SNPs to Risk of Metastasis (StoRM) study and included 293 patients with metastatic primary breast cancer at diagnosis. Ultimately, larger replication studies are needed to confirm the identified associations.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/mortality , Cancer Survivors , Genetic Variation , Germ Cells/metabolism , Biomarkers, Tumor , Breast Neoplasms/epidemiology , Breast Neoplasms/pathology , Female , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Kaplan-Meier Estimate , Polymorphism, Single Nucleotide
6.
HGG Adv ; 2(3): 100041, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34355204

ABSTRACT

Genome-wide association studies (GWASs) have identified thousands of cancer risk loci revealing many risk regions shared across multiple cancers. Characterizing the cross-cancer shared genetic basis can increase our understanding of global mechanisms of cancer development. In this study, we collected GWAS summary statistics based on up to 375,468 cancer cases and 530,521 controls for fourteen types of cancer, including breast (overall, estrogen receptor [ER]-positive, and ER-negative), colorectal, endometrial, esophageal, glioma, head/neck, lung, melanoma, ovarian, pancreatic, prostate, and renal cancer, to characterize the shared genetic basis of cancer risk. We identified thirteen pairs of cancers with statistically significant local genetic correlations across eight distinct genomic regions. Specifically, the 5p15.33 region, harboring the TERT and CLPTM1L genes, showed statistically significant local genetic correlations for multiple cancer pairs. We conducted a cross-cancer fine-mapping of the 5p15.33 region based on eight cancers that showed genome-wide significant associations in this region (ER-negative breast, colorectal, glioma, lung, melanoma, ovarian, pancreatic, and prostate cancer). We used an iterative analysis pipeline implementing a subset-based meta-analysis approach based on cancer-specific conditional analyses and identified ten independent cross-cancer associations within this region. For each signal, we conducted cross-cancer fine-mapping to prioritize the most plausible causal variants. Our findings provide a more in-depth understanding of the shared inherited basis across human cancers and expand our knowledge of the 5p15.33 region in carcinogenesis.

7.
Breast Cancer Res ; 23(1): 86, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34407845

ABSTRACT

BACKGROUND: Given the high heterogeneity among breast tumors, associations between common germline genetic variants and survival that may exist within specific subgroups could go undetected in an unstratified set of breast cancer patients. METHODS: We performed genome-wide association analyses within 15 subgroups of breast cancer patients based on prognostic factors, including hormone receptors, tumor grade, age, and type of systemic treatment. Analyses were based on 91,686 female patients of European ancestry from the Breast Cancer Association Consortium, including 7531 breast cancer-specific deaths over a median follow-up of 8.1 years. Cox regression was used to assess associations of common germline variants with 15-year and 5-year breast cancer-specific survival. We assessed the probability of these associations being true positives via the Bayesian false discovery probability (BFDP < 0.15). RESULTS: Evidence of associations with breast cancer-specific survival was observed in three patient subgroups, with variant rs5934618 in patients with grade 3 tumors (15-year-hazard ratio (HR) [95% confidence interval (CI)] 1.32 [1.20, 1.45], P = 1.4E-08, BFDP = 0.01, per G allele); variant rs4679741 in patients with ER-positive tumors treated with endocrine therapy (15-year-HR [95% CI] 1.18 [1.11, 1.26], P = 1.6E-07, BFDP = 0.09, per G allele); variants rs1106333 (15-year-HR [95% CI] 1.68 [1.39,2.03], P = 5.6E-08, BFDP = 0.12, per A allele) and rs78754389 (5-year-HR [95% CI] 1.79 [1.46,2.20], P = 1.7E-08, BFDP = 0.07, per A allele), in patients with ER-negative tumors treated with chemotherapy. CONCLUSIONS: We found evidence of four loci associated with breast cancer-specific survival within three patient subgroups. There was limited evidence for the existence of associations in other patient subgroups. However, the power for many subgroups is limited due to the low number of events. Even so, our results suggest that the impact of common germline genetic variants on breast cancer-specific survival might be limited.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/mortality , Germ-Line Mutation , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Prognosis , Survival Analysis
8.
Cancer Epidemiol Biomarkers Prev ; 30(9): 1669-1680, 2021 09.
Article in English | MEDLINE | ID: mdl-34162658

ABSTRACT

BACKGROUND: Many loci have been found to be associated with risk of epithelial ovarian cancer (EOC). However, although there is considerable variation in progression-free survival (PFS), no loci have been found to be associated with outcome at genome-wide levels of significance. METHODS: We carried out a genome-wide association study (GWAS) of PFS in 2,352 women with EOC who had undergone cytoreductive surgery and standard carboplatin/paclitaxel chemotherapy. RESULTS: We found seven SNPs at 12q24.33 associated with PFS (P < 5 × 10-8), the top SNP being rs10794418 (HR = 1.24; 95% CI, 1.15-1.34; P = 1.47 × 10-8). High expression of a nearby gene, ULK1, is associated with shorter PFS in EOC, and with poor prognosis in other cancers. SNP rs10794418 is also associated with expression of ULK1 in ovarian tumors, with the allele associated with shorter PFS being associated with higher expression, and chromatin interactions were detected between the ULK1 promoter and associated SNPs in serous and endometrioid EOC cell lines. ULK1 knockout ovarian cancer cell lines showed significantly increased sensitivity to carboplatin in vitro. CONCLUSIONS: The locus at 12q24.33 represents one of the first genome-wide significant loci for survival for any cancer. ULK1 is a plausible candidate for the target of this association. IMPACT: This finding provides insight into genetic markers associated with EOC outcome and potential treatment options.See related commentary by Peres and Monteiro, p. 1604.


Subject(s)
Autophagy-Related Protein-1 Homolog , Carcinoma, Ovarian Epithelial/genetics , Intracellular Signaling Peptides and Proteins , Ovarian Neoplasms/genetics , Biomarkers, Tumor/blood , Carcinoma, Ovarian Epithelial/mortality , Female , Gene Knockout Techniques , Genome-Wide Association Study , Humans , Ovarian Neoplasms/mortality , Polymorphism, Single Nucleotide , Progression-Free Survival
10.
Nat Commun ; 12(1): 1078, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597508

ABSTRACT

Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10-8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Adult , Alleles , Female , Genotype , Humans , Linkage Disequilibrium , Middle Aged , Mutation , Quantitative Trait Loci/genetics , Risk Factors
11.
J Clin Invest ; 131(3)2021 02 01.
Article in English | MEDLINE | ID: mdl-33529165

ABSTRACT

Germline mutations in BRCA1 and BRCA2 (BRCA1/2) genes considerably increase breast and ovarian cancer risk. Given that tumors with these mutations have elevated genomic instability, they exhibit relative vulnerability to certain chemotherapies and targeted treatments based on poly (ADP-ribose) polymerase (PARP) inhibition. However, the molecular mechanisms that influence cancer risk and therapeutic benefit or resistance remain only partially understood. BRCA1 and BRCA2 have also been implicated in the suppression of R-loops, triple-stranded nucleic acid structures composed of a DNA:RNA hybrid and a displaced ssDNA strand. Here, we report that loss of RNF168, an E3 ubiquitin ligase and DNA double-strand break (DSB) responder, remarkably protected Brca1-mutant mice against mammary tumorigenesis. We demonstrate that RNF168 deficiency resulted in accumulation of R-loops in BRCA1/2-mutant breast and ovarian cancer cells, leading to DSBs, senescence, and subsequent cell death. Using interactome assays, we identified RNF168 interaction with DHX9, a helicase involved in the resolution and removal of R-loops. Mechanistically, RNF168 directly ubiquitylated DHX9 to facilitate its recruitment to R-loop-prone genomic loci. Consequently, loss of RNF168 impaired DHX9 recruitment to R-loops, thereby abrogating its ability to resolve R-loops. The data presented in this study highlight a dependence of BRCA1/2-defective tumors on factors that suppress R-loops and reveal a fundamental RNF168-mediated molecular mechanism that governs cancer development and vulnerability.


Subject(s)
BRCA1 Protein/deficiency , BRCA2 Protein/deficiency , DNA, Neoplasm/metabolism , Genomic Instability , Mammary Neoplasms, Animal/metabolism , Ovarian Neoplasms/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , DNA, Neoplasm/genetics , Female , Genetic Loci , Humans , Mammary Neoplasms, Animal/genetics , Mice , Mice, Knockout , Ovarian Neoplasms/genetics , Ubiquitin-Protein Ligases/genetics
12.
Am J Hum Genet ; 107(4): 778-787, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32871102

ABSTRACT

Breast cancer genome-wide association studies (GWASs) have identified 150 genomic risk regions containing more than 13,000 credible causal variants (CCVs). The CCVs are predominantly noncoding and enriched in regulatory elements. However, the genes underlying breast cancer risk associations are largely unknown. Here, we used genetic colocalization analysis to identify loci at which gene expression could potentially explain breast cancer risk phenotypes. Using data from the Breast Cancer Association Consortium (BCAC) and quantitative trait loci (QTL) from the Genotype-Tissue Expression (GTEx) project and The Cancer Genome Project (TCGA), we identify shared genetic relationships and reveal novel associations between cancer phenotypes and effector genes. Seventeen genes, including NTN4, were identified as potential mediators of breast cancer risk. For NTN4, we showed the rs61938093 CCV at this region was located within an enhancer element that physically interacts with the NTN4 promoter, and the risk allele reduced NTN4 promoter activity. Furthermore, knockdown of NTN4 in breast cells increased cell proliferation in vitro and tumor growth in vivo. These data provide evidence linking risk-associated variation to genes that may contribute to breast cancer predisposition.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Neoplasm Proteins/genetics , Netrins/genetics , Alleles , Animals , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Cell Line, Tumor , Enhancer Elements, Genetic , Female , Gene Expression Profiling , Genome-Wide Association Study , Genomics/methods , Heterografts , Humans , MCF-7 Cells , Mice , Mice, Nude , Neoplasm Proteins/metabolism , Netrins/metabolism , Phenotype , Quantitative Trait Loci , Risk
13.
Front Genet ; 11: 550, 2020.
Article in English | MEDLINE | ID: mdl-32714364

ABSTRACT

Long non-coding RNAs (lncRNAs) play crucial roles in human physiology, and have been found to be associated with various cancers. Transcribed ultraconserved regions (T-UCRs) are a subgroup of lncRNAs conserved in several species, and are often located in cancer-related regions. Breast cancer is the most common cancer in women worldwide and the leading cause of female cancer deaths. We investigated the association of genetic variants in lncRNA and T-UCR regions with breast cancer risk to uncover candidate loci for further analysis. Our focus was on low-penetrance variants that can be discovered in a large dataset. We selected 565 regions of lncRNAs and T-UCRs that are expressed in breast or breast cancer tissue, or show expression correlation to major breast cancer associated genes. We studied the association of single nucleotide polymorphisms (SNPs) in these regions with breast cancer risk in the 122970 case samples and 105974 controls of the Breast Cancer Association Consortium's genome-wide data, and also by in silico functional analyses using Integrated Expression Quantitative trait and in silico prediction of GWAS targets (INQUISIT) and expression quantitative trait loci (eQTL) analysis. The eQTL analysis was carried out using the METABRIC dataset and analyses from GTEx and ncRNA eQTL databases. We found putative breast cancer risk variants (p < 1 × 10-5) targeting the lncRNA GABPB1-AS1 in INQUISIT and eQTL analysis. In addition, putative breast cancer risk associated SNPs (p < 1 × 10-5) in the region of two T-UCRs, uc.184 and uc.313, located in protein coding genes CPEB4 and TIAL1, respectively, targeted these genes in INQUISIT and in eQTL analysis. Other non-coding regions containing SNPs with the defined p-value and highly significant false discovery rate (FDR) for breast cancer risk association were discovered that may warrant further studies. These results suggest candidate lncRNA loci for further research on breast cancer risk and the molecular mechanisms.

14.
iScience ; 23(7): 101296, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32622267

ABSTRACT

Proper immune system function hinders cancer development, but little is known about whether genetic variants linked to cancer risk alter immune cells. Here, we report 57 cancer risk loci associated with differences in immune and/or stromal cell contents in the corresponding tissue. Predicted target genes show expression and regulatory associations with immune features. Polygenic risk scores also reveal associations with immune and/or stromal cell contents, and breast cancer scores show consistent results in normal and tumor tissue. SH2B3 links peripheral alterations of several immune cell types to the risk of this malignancy. Pleiotropic SH2B3 variants are associated with breast cancer risk in BRCA1/2 mutation carriers. A retrospective case-cohort study indicates a positive association between blood counts of basophils, leukocytes, and monocytes and age at breast cancer diagnosis. These findings broaden our knowledge of the role of the immune system in cancer and highlight promising prevention strategies for individuals at high risk.

15.
Nat Genet ; 52(6): 572-581, 2020 06.
Article in English | MEDLINE | ID: mdl-32424353

ABSTRACT

Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype1-3. To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P < 5.0 × 10-8), 15 of which showed evidence for associations with at least one tumor feature (false discovery rate < 0.05). Five loci showed associations (P < 0.05) in opposite directions between luminal and non-luminal subtypes. In silico analyses showed that these five loci contained cell-specific enhancers that differed between normal luminal and basal mammary cells. The genetic correlations between five intrinsic-like subtypes ranged from 0.35 to 0.80. The proportion of genome-wide chip heritability explained by all known susceptibility loci was 54.2% for luminal A-like disease and 37.6% for triple-negative disease. The odds ratios of polygenic risk scores, which included 330 variants, for the highest 1% of quantiles compared with middle quantiles were 5.63 and 3.02 for luminal A-like and triple-negative disease, respectively. These findings provide an improved understanding of genetic predisposition to breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores.


Subject(s)
Breast Neoplasms/genetics , Genome-Wide Association Study , BRCA1 Protein/genetics , Breast Neoplasms/pathology , Case-Control Studies , Female , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , Mutation , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
16.
Cancers (Basel) ; 12(1)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31936698

ABSTRACT

Genome-wide association studies have revealed a locus at 8p12 that is associated with breast cancer risk. Fine-mapping of this locus identified 16 candidate causal variants (CCVs). However, as these variants are intergenic, their function is unclear. To map chromatin looping from this risk locus to a previously identified candidate target gene, DUSP4, we performed chromatin conformation capture analyses in normal and tumoural breast cell lines. We identified putative regulatory elements, containing CCVs, which looped to the DUSP4 promoter region. Using reporter gene assays, we found that the risk allele of CCV rs7461885 reduced the activity of a DUSP4 enhancer element, consistent with the function of DUSP4 as a tumour suppressor gene. Furthermore, the risk allele of CCV rs12155535, located in another DUSP4 enhancer element, was negatively correlated with looping of this element to the DUSP4 promoter region, suggesting that this allele would be associated with reduced expression. These findings provide the first evidence that CCV risk alleles downregulate DUSP4 expression, suggesting that this gene is a regulatory target of the 8p12 breast cancer risk locus.

17.
Genome Biol ; 21(1): 8, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31910858

ABSTRACT

BACKGROUND: Genome-wide association studies have identified 196 high confidence independent signals associated with breast cancer susceptibility. Variants within these signals frequently fall in distal regulatory DNA elements that control gene expression. RESULTS: We designed a Capture Hi-C array to enrich for chromatin interactions between the credible causal variants and target genes in six human mammary epithelial and breast cancer cell lines. We show that interacting regions are enriched for open chromatin, histone marks for active enhancers, and transcription factors relevant to breast biology. We exploit this comprehensive resource to identify candidate target genes at 139 independent breast cancer risk signals and explore the functional mechanism underlying altered risk at the 12q24 risk region. CONCLUSIONS: Our results demonstrate the power of combining genetics, computational genomics, and molecular studies to rationalize the identification of key variants and candidate target genes at breast cancer GWAS signals.


Subject(s)
Breast Neoplasms/genetics , Chromatin/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor , Genome, Human , Genome-Wide Association Study , Humans
18.
Genome Biol ; 21(1): 7, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31910864

ABSTRACT

BACKGROUND: Genetic variants identified through genome-wide association studies (GWAS) are predominantly non-coding and typically attributed to altered regulatory elements such as enhancers and promoters. However, the contribution of non-coding RNAs to complex traits is not clear. RESULTS: Using targeted RNA sequencing, we systematically annotated multi-exonic non-coding RNA (mencRNA) genes transcribed from 1.5-Mb intervals surrounding 139 breast cancer GWAS signals and assessed their contribution to breast cancer risk. We identify more than 4000 mencRNA genes and show their expression distinguishes normal breast tissue from tumors and different breast cancer subtypes. Importantly, breast cancer risk variants, identified through genetic fine-mapping, are significantly enriched in mencRNA exons, but not the promoters or introns. eQTL analyses identify mencRNAs whose expression is associated with risk variants. Furthermore, chromatin interaction data identify hundreds of mencRNA promoters that loop to regions that contain breast cancer risk variants. CONCLUSIONS: We have compiled the largest catalog of breast cancer-associated mencRNAs to date and provide evidence that modulation of mencRNAs by GWAS variants may provide an alternative mechanism underlying complex traits.


Subject(s)
Breast Neoplasms/genetics , RNA, Untranslated/genetics , Genome-Wide Association Study , Humans , Sequence Analysis, RNA
19.
Nat Commun ; 11(1): 312, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949161

ABSTRACT

Identifying the underlying genetic drivers of the heritability of breast cancer prognosis remains elusive. We adapt a network-based approach to handle underpowered complex datasets to provide new insights into the potential function of germline variants in breast cancer prognosis. This network-based analysis studies ~7.3 million variants in 84,457 breast cancer patients in relation to breast cancer survival and confirms the results on 12,381 independent patients. Aggregating the prognostic effects of genetic variants across multiple genes, we identify four gene modules associated with survival in estrogen receptor (ER)-negative and one in ER-positive disease. The modules show biological enrichment for cancer-related processes such as G-alpha signaling, circadian clock, angiogenesis, and Rho-GTPases in apoptosis.


Subject(s)
Breast Neoplasms/genetics , Genetic Variation , Genome-Wide Association Study , Germ Cells , Apoptosis , Circadian Clocks , Computational Biology , Female , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Gene Regulatory Networks , Genotype , Humans , Prognosis , Receptors, Estrogen/genetics , Signal Transduction
20.
Nat Genet ; 52(1): 56-73, 2020 01.
Article in English | MEDLINE | ID: mdl-31911677

ABSTRACT

Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Chromosome Mapping/methods , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Bayes Theorem , Female , Humans , Linkage Disequilibrium , Regulatory Sequences, Nucleic Acid , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...