Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 8322, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594335

ABSTRACT

Sewage sludge has long been applied to soils as a fertilizer yet may be enriched with leachable metal(loid)s and other pollutants. Sulfidated nanoscale zerovalent iron (S-nZVI) has proven effective at metal sorption; however, risks associated with the use of engineered nanoparticles cannot be neglected. This study investigated the effects of the co-application of composted sewage sludge with S-nZVI for the stabilization of Cd, Pb, Fe, Zn. Five treatments (control, Fe grit, composted sludge, S-nZVI, composted sludge and S-nZVI), two leaching fluids; synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) fluid were used, samples were incubated at different time intervals of 1 week, 1, 3, and 6 months. Fe grit proved most efficient in reducing the concentration of extractable metals in the batch experiment; the mixture of composted sludge and S-nZVI was the most effective in reducing the leachability of metals in the column systems, while S-nZVI was the most efficient for reducing about 80% of Zn concentration in soil solution. Thus, the combination of two amendments, S-nZVI incorporated with composted sewage sludge and Fe grit proved most effective at reducing metal leaching and possibly lowering the associated risks. Future work should investigate the longer-term efficiency of this combination.

2.
Sci Total Environ ; 927: 171892, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38531450

ABSTRACT

The majority of the studies on nanoscale zero-valent iron (nZVI) are conducted at a laboratory-scale, while field-scale evidence is scarce. The objective of this study was to compare the metal(loid) immobilization efficiency of selected Fe-based materials under field conditions for a period of one year. Two contrasting metal(loid) (As, Cd, Pb, Zn) enriched soils from a smelter-contaminated area were amended with sulfidized nZVI (S-nZVI) solely or combined with thermally stabilized sewage sludge and compared to amendment with microscale iron grit. In the soil with higher pH (7.5) and organic matter content (TOC = 12.7 %), the application of amendments resulted in a moderate increase in pH and reduced As, Cd, Pb, and Zn leaching after 1-year, with S-nZVI and sludge combined being the most efficient, followed by iron grit and S-nZVI alone. However, the amendments had adverse impacts on microbial biomass quantity, S-nZVI being the least damaging. In the soil with a lower pH (6.0) and organic matter content (TOC = 2.3 %), the results were mixed; 0.01 M CaCl2 extraction data showed only S-nZVI with sludge as remaining effective in reducing extractable concentrations of metals; on the other hand, Cd and Zn concentrations were increased in the extracted soil pore water solutions, in contrast to the two conventional amendments. Despite that, S-nZVI with sludge enhanced the quantity of microbial biomass in this soil. Additional earthworm avoidance data indicated that they generally avoided soil treated with all Fe-based materials, but the presence of sludge impacted their preferences somewhat. In summary, no significant differences between S-nZVI and iron grit were observed for metal(loid) immobilization, though sludge significantly improved the performance of S-nZVI in terms of soil health indicators. Therefore, this study indicates that S-nZVI amendment of soils alone should be avoided, though further field evidence from a broader range of soils is now required.


Subject(s)
Iron , Soil Pollutants , Soil , Soil Pollutants/analysis , Iron/chemistry , Soil/chemistry , Metals, Heavy/analysis , Metal Nanoparticles/chemistry , Metallurgy , Environmental Restoration and Remediation/methods
3.
Environ Sci Pollut Res Int ; 30(29): 74314-74326, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37202639

ABSTRACT

The accuracy of environmental risk assessment depends upon selecting appropriate matrices to extract the most risk-relevant portion of contaminant(s) from the soil. Here, we applied the chelatants EDTA and tartaric acid to extract a metal-contaminated soil. Pistia stratiotes was applied as an indicator plant to measure accumulation from the metal-laden bulk solutions generated, in a hydroponic experiment lasting 15 days. Speciation modeling was used to elucidate key geo-chemical mechanisms impacting matrix and metal-specific uptake revealed by experimental work. The highest concentrations of soil-borne metals were extracted from soil by EDTA (7.4% for Cd), but their uptake and translocation to the plant were restricted due to the formation of stable metal complexes predominantly with DOC. Tartaric acid solubilized metals to a lesser extent (4.6% for Cd), but a higher proportion was plant available due to its presence mainly in the form of bivalent metal cations. The water extraction showed the lowest metal extraction (e.g., 3.9% for Cd), but the metal species behaved similarly to those extracted by tartaric acid. This study demonstrates that not all extractions are equal and that metal-specific speciation will impact accurate risk assessment in soil (water)-plant systems. In the case of EDTA, a deleterious impact on DOC leaching is an obvious drawback. As such, further work should now determine soil and not only metal-specific impacts of chelatants on the extraction of environmentally relevant portions of metal(loid)s.


Subject(s)
Araceae , Metals, Heavy , Soil Pollutants , Metals, Heavy/analysis , Cadmium , Edetic Acid/chemistry , Soil/chemistry , Biodegradation, Environmental , Soil Pollutants/analysis
5.
Environ Sci Pollut Res Int ; 30(5): 12571-12583, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36112289

ABSTRACT

A novel iron-biochar composite adsorbent was produced via ball milling-assisted one-pot pyrolyzed BM-nZVI-BC 800. Characterization proved that nano zero valent iron was successfully embedded in the newly produced biochar, and the nZVI payload was higher than that of traditional one-pot pyrolyzed methods. BM-nZVI-BC 800 provided a high adsorption performance of cadmium reaching 96.40 mg·g-1 during batch testing. Alkaline conditions were beneficial for cadmium removal of BM-nZVI-BC 800. The pseudo-second-order kinetic model and Langmuir isotherm fitted better, demonstrating that the Cd adsorption on the BM-nZVI-BC 800 was a chemical and surface process. The intraparticle diffusion controlled the adsorption of BM-nZVI-BC 800. The physisorption dominated by high specific surface area and mesoporous structure was the primary mechanism in the removal of cadmium, though electrostatic attraction and complexation also played a secondary role in cadmium adsorption. Compared to adsorbents prepared by more traditional methods, the efficiencies of the ball milling-assisted one-pot pyrolyzed method appears superior.


Subject(s)
Iron , Water Pollutants, Chemical , Iron/chemistry , Cadmium , Water Pollutants, Chemical/analysis , Water/chemistry , Charcoal/chemistry , Adsorption
6.
Environ Sci Pollut Res Int ; 29(55): 83545-83553, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35764732

ABSTRACT

The application of organic amendments to contaminated soils is a remediation method to regulate metal(loid) leaching to waters and uptake to crops. Here, wood-derived biochar and/or green waste compost was amended to a Zn-rich agricultural soil (~ 450 mg kg-1 total Zn, derived from legacy sludge application). A pot experiment grew barley and pea crops in amended soil for 100 days, simultaneously measuring Zn, pH, and dissolved organic carbon (DOC) in pore waters and Zn uptake to plants. An assessment was made of leaching of Zn via a linked column test that recirculated soil leachates to amendments multiple times to chart the confounding impacts of pH and DOC on Zn mobility. Concentrations of Zn in pore waters in the pot test were reduced from 2 mg l-1 in soil without amendment to 1 mg l-1 following the addition of 5% (vol.) biochar and compost, which was reduced further (0.5 mg l-1) in the presence of crops. DOC appeared largely unaffected by soil amendment when mixed into soil, though was universally increased by the presence of the barley crop, whilst pH was variable (pH 4-6) and not clearly correlated with any intervention. Barley head mass was significantly increased after 5% biochar and both doses of compost amendment. Barley Zn content was maintained or enhanced by all soil amendments. The leaching column test revealed that biochar raised pH above that of the soil and compost amendment. Zn leachate concentrations were also reduced from after biochar amendment. Notably, compost resulted in net mobilisation of Zn from soil. This study demonstrates that the addition of biochar and compost to a Zn-rich agricultural soil was able to reduce pore water Zn considerably, especially in the presence of a barley crop. Compared to compost, biochar was the more efficient sorbent of Zn.


Subject(s)
Composting , Soil Pollutants , Soil/chemistry , Sewage/chemistry , Charcoal/chemistry , Soil Pollutants/analysis , Zinc
7.
J Environ Manage ; 318: 115530, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35752005

ABSTRACT

The remediation of legacy metal(loid) contaminated soils in-situ relies on the addition of [organic] amendments to reduce the mobility and bioavailability of metal(loid)s, improve soil geochemical parameters and restore vegetation growth. Two vermicomposts of food and animal manure waste origin (V1 and V2) were amended to an arsenic (As) and copper (Cu) contaminated mine soil (≤1500 mg kg-1). Leaching columns and pot experiments evaluated copper and arsenic in soil pore waters, as well as pH, dissolved organic carbon (DOC) and phosphate (PO43-) concentrations. The uptake of As and Cu to ryegrass was also measured via the pot experiment, whilst recovered biochars from the column leaching test were measured for metal sorption at the termination of leaching. Vermicompost amendment to soil facilitated ryegrass growth which was entirely absent from the untreated soil in the pot test. All amendment combinations raised pore water pH by ∼4 units. Copper concentrations in pore waters from columns and pots showed steep reductions (∼1 mg L-1), as a result of V1 & V2 compared to untreated soil (∼500 mg L-1). Combined with an increase in DOC and PO43-, As was mobilised an order of magnitude by V1. Biochar furthest reduced Cu in pore waters from the columns to <0.1 mg L-1, as a result of surface sorption. The results of this study indicate that biochar can restrict the mobility of Cu from a contaminated mine soil after other amendment interventions have been used to promote revegetation. However, the case of As, biochar cannot counter the profound impact of vermicompost on arsenic mobility.


Subject(s)
Arsenic , Lolium , Soil Pollutants , Animals , Arsenic/analysis , Charcoal , Copper/analysis , Metals , Mining , Soil , Soil Pollutants/analysis
8.
Chemosphere ; 293: 133586, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35031246

ABSTRACT

The soil hydraulic properties of two low-organic soils (Fluvisol; Regosol) were investigated following their amendment with biochar alone or in combination with manure, compost and co-composted biochar. Self-irrigating boxes containing the soil and amendment combinations were purposed with a battery of soil moisture sensors as well as soil porewater sampling devices. Static sampling determined bulk density, porosity and derived soil water retention curves. The aim of this study was to identify the most advantageous amendment combinations to enhance soil water retention whilst simultaneously avoiding excessive nutrient leaching arising, primarily, from manure application. Biochar significantly decreased bulk density and increased total porosity when compared to compost in the Fluvisol, whereas manure affected the greatest changes in the Regosol. All of the tested amendments adjusted the shape or extent of the soil water retention curves, but biochar addition resulted in the greatest increase (⁓50%) in easily available water content (for plants) in both soils, when compared to the control. Saturated hydraulic conductivity was, however, not changed by any of the amendments which reflects a lack of influence on infiltration. An enhancement in nutrient retention occurred in some of the soil amendment configurations, such as for co-composted biochar at 2% dosage and 5% manure-biochar mixture, as revealed by porewater analysis. In summary, the application of biochar with and without additional compost and manure can enhance soil water retention in low-organic soils whilst maintaining or enhancing nutrient retention. Such finding supports the application of mixed organic amendments to low-organic (and therefore drought-prone) arable soils.


Subject(s)
Composting , Manure , Charcoal , Nutrients , Soil , Water
9.
Sci Total Environ ; 814: 152772, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34986421

ABSTRACT

Increased soil drought events threaten the yields of sugar beet (Beta vulgaris L.) and other staples of arable production in central Europe. In this study we evaluated soil moisture and nutrients as impacted by a two and five % (wt) addition of biochar, manure and their blend to a loamy-sand Regosol. Cyclical soil drought was achieved by the controlled reduction of watering by 75% in pot experiments. Ongoing soil moisture and nutrient measurements were taken, and physiological parameters of sugar beet plants were analysed three weeks after the induced drought. At the end of the experiment (16 weeks) plants were harvested and their mass assessed, as well as their nutrient, pigment and sugar contents. In contrast to the addition of manure, soil volumetric water contents were two to three times greater after biochar amendment, compared to the control soil. Porewater analysis revealed that nutrient leaching (e.g., NO3-, K+) from manure addition to soil was reduced when biochar was blended in (by ≤86% compared to manure alone). Crop analysis showed that leaf gas exchanges were moderated during drought following soil amendment, and leaf and tuber yields were increased furthest when combined biochar-manure blends were applied (> 2-times compared to the control). Perhaps most importantly, the advantageous soil conditions induced by the combined biochar and manure addition also resulted in significantly increased sugar contents in plants (2.4-times) pointing to immediate practical applications of these results in the field.


Subject(s)
Beta vulgaris , Manure , Charcoal , Dehydration , Humans , Soil , Sucrose
10.
Environ Sci Pollut Res Int ; 28(36): 50378-50387, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33956320

ABSTRACT

A field experiment with 24 different treatments was carried out to study the effects of a combination of water management (WM), soil application of calcium magnesium phosphate (CMP), and foliar spraying of Si/Se on Cd uptake by paddy rice (Teyou 524). The water management modes included W1 (conventional water management) and W2 (flooding during the whole growth period). The application of CMP included P1 (1800 kg·hm-2) and P2 (3000 kg·hm-2). The leaf spraying regulations included LS (2.0 mmol·L-1 Na2SiO3), LX (25 µmol·L-1 Na2SeO3), and LSX (1.0 mmol·L-1 Na2SiO3 and 12.5 µmol·L-1 Na2SeO3). The results indicated that, compared to the control (W1), flooding and CMP reduced soil exchangeable Cd by 10.3, 21.5, 32.2, 27.6 and 36.9% under conditions of W2, P1, P2, W2P1 and W2P2, respectively; but the grain yield was reduced under W2 condition. Some individual treatments, including W2, P1, P2, LS, LX, and LSX, could reduce Cd concentration in the grain by 23.1-60.3%; but the combined regulations could reduce grain Cd concentrations up to 79.5%. Only the combined mode of CMP and leaf spraying of Si/Se could control grain Cd concentration below the Chinese National Food Safety Standard (0.2 mg·kg-1). Combined modes of fertilizer application (W2 and CMP) and foliar spraying (Si/Se), including W2P2LS, W2P2LX, W2P2LSX, were the most effective in reducing the Cd transport coefficients of both root-to-straw (RS) and straw-to-seed (SS). Considering Cd concentration in grain, treatments W2P2LS and W2P2LSX were the most effective ones, which could reduce Cd concentrations to 0.090 mg·kg-1 and 0.089 mg·kg-1 in grain, respectively. These results demonstrated that combined manipulation of the root zone (W2 and CMP) and foliar spraying (Si/Se) can effectively reduce grain Cd concentrations in rice.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Phosphates , Soil , Soil Pollutants/analysis , Water , Water Supply
11.
J Hazard Mater ; 393: 122479, 2020 Jul 05.
Article in English | MEDLINE | ID: mdl-32369890

ABSTRACT

Stabilized cementitious aggregates AG were produced from wood ashes containing ∼10,000 mg kg-1 As, Cr and Cu, then amended to two agricultural pasture soils. Metal(loid) leaching (column tests), mobility (pore water extracts) and uptake to ryegrass was determined, comparing raw ashes with aggregates. Risk modeling was applied to selected data to inform wider discussion of the experimental results. Under rapid leaching (7 h) AG 2 (pre-strengthened with CO2) outperformed AG 1 in suppressing soluble metal(loid) removal. During prolonged leaching (12d) both aggregates were susceptible to mild dissolution/release of metal(loid)s upon acidification. Pore water sampled from the pot test indicated that Cr was generally most mobile, As least so, reduced furthest by AG 2. Risk modelling, based on pot experimental data, demonstrated soil specific accumulation of As in beef muscle and milk, being furthest reduced (compared to the raw ash addition) by AG 2 in soil A, but increased in soil B by the same treatment. The results of this study indicate that a reduction in soluble As, Cr and Cu can be achieved through cementitious aggregation of wood ashes, though the extent is metal(loid) specific when amended to soils. Pre-testing under local soil conditions before field application would be required to ensure that metal(loid) mobility remained suppressed.

12.
Article in English | MEDLINE | ID: mdl-32455743

ABSTRACT

This study investigates how arsenic (As) uptake, accumulation, and migration responds to selenium (Se) foliar application (0-5.0 mg × kg-1). Rice varieties known to accumulate low (DOURADOAGULHA) and high (SINALOAA68) concentrations of arsenic were chosen to grow on soil with different As concentrations (20.1, 65.2, 83.9 mg × kg-1). The results showed that Se of 1.0 mg × L-1 significantly alleviated As stress on upland rice grown on the As-contaminated soil. Under light (65.2 mg × kg-1) and moderate (83.9 mg × kg-1) As concentration treatments, the biomass of upland rice was increased by 23.15% and 36.46% for DOURADOAGULHA, and 46.3% and 54.9% for SINALOAA68. However, the high Se dose (5.0 mg × kg-1) had no significant effect on biomass and heights of upland rice compared to plants where no Se was added. Se significantly decreased As contents in stems and leaves and had different effects on As transfer coefficients for the two rice varieties: when grown on soil with low and moderate As concentrations, Se could reduce the transfer coefficient from stems to leaves, but when grown on the high As soils, this was not the case. The chlorophyll content in plants grown in soil with the moderate concentration of As could be improved by 27.4%-55.3% compared with no Se treatment. Under different As stress, the Se foliar application increased the net photosynthesis, stomatal conductance, and transpiration rate, which meant that Se could enhance the photosynthesis of rice. The intercellular CO2 concentration variation implied that the stomatal or non-stomatal limitations could both occur for different rice varieties under different Se application doses. In conclusion, under moderate As stress, foliar application of Se (1.0 mg × L-1) is recommend to overcome plant damage and As accumulation.


Subject(s)
Arsenic , Oryza , Selenium , Soil Pollutants , Arsenic/pharmacokinetics , Cadmium , Photosynthesis , Selenious Acid , Selenium/pharmacology , Soil Pollutants/pharmacokinetics
13.
Chemosphere ; 242: 125255, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31896180

ABSTRACT

A woody-biochar was added to waste biomass during a composting process. The resulting compost-char was amended to a metal contaminated soil and two plant species, L. perenne and E. sativa, were grown in a pot experiment to determine 1) plant survival and stress factors, 2) uptake of metals to plants and, 3) chemical characteristics of sampled soils and pore waters. Compost supplemented with biochar after the composting process were also tested, as well as a commercially available compost, for comparison. Co-composting with biochar hastened the composting process, resulting in a composite material of reduced odour, increased maturity, circum-neutral pH and increased moisture retention than compost (increase by 3% of easily removable water content). When amended to the soil, CaCl2 extractable and pore water metals s were reduced by all compost treatments with little influence of biochar addition at any tested dose. Plant growth success was promoted furthest by the addition of co-composted biochar to the test soil, especially in the case of E. sativa. For both tested plant species significant reductions in plant metal concentrations (e.g. 8-times for Zn) were achieved, against the control soil, by compost, regardless of biochar addition. The results of this study demonstrate that the addition of biochar into the composting process can hasten the stability of the resulting compost-char, with more favourable characteristics as a soil amendment/improver than compost alone. This appears achievable whilst also maintaining the provision of available nutrients to soils and the reduction of metal mobility, and improved conditions for plant establishment.


Subject(s)
Brassicaceae/growth & development , Charcoal/chemistry , Composting , Lolium/growth & development , Metals/analysis , Wood/chemistry , Biodegradation, Environmental , Biomass , Brassicaceae/chemistry , Lolium/chemistry , Models, Theoretical , Soil/chemistry , Soil Pollutants/analysis
14.
Article in English | MEDLINE | ID: mdl-31835448

ABSTRACT

Arsenic (As) poses a risk to the human health in excess exposure and microbes play an important role in the toxicity of As. Arsenic methylation mediated by microbes is a key driver of As toxicity in the environment and this paper reviews the role of microbial arsenic methylation and volatilization in the biogeochemical cycle of arsenic. In specific, little is presently known about the molecular mechanism and gene characterization of arsenic methylation. The uptake of methylated arsenic in plants is influenced by microbial arsenic methylation in soil, thus enhancing the volatilization of methylated arsenic is a potential mitigation point for arsenic mobility and toxicity in the environment. On the other hand, the potential risk of methylated arsenic on organisms is also discussed. And the directions for future research, theoretical reference for the control and remediation of arsenic methylation, are presented.


Subject(s)
Arsenic/metabolism , Plants/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Biological Transport , Methylation
15.
Sci Total Environ ; 625: 71-78, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29289008

ABSTRACT

A novel sorbent made from biochar modified with an amorphous Mn oxide (AMOchar) was compared with pure biochar, pure AMO, AMO+biochar mixtures and biochar+birnessite composite for the removal of various metal(loid)s from aqueous solutions using adsorption and solid-state analyses. In comparison with the pristine biochar, both Mn oxide-biochar composites were able to remove significantly greater quantities of various metal(loid)s from the aqueous solutions, especially at a ratio 2:1 (AMO:biochar). The AMOchar proved most efficient, removing almost 99, 91 and 51% of Pb, As and Cd, respectively. Additionally, AMOchar and AMO+biochar mixture exhibited reduced Mn leaching, compared to pure AMO. Therefore, it is concluded that the synthesis of AMO and biochar is able to produce a double acting sorbent ('dorbent') of enhanced efficiency, compared with the individual deployment of their component materials.

16.
Chemosphere ; 181: 150-159, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28437740

ABSTRACT

Two metal(loid) contaminated agricultural soils were amended with grape stalk (wine production by-product)-derived biochar as well as its pre-pyrolysed origin material, to investigate their geochemical impacts on As, Cr, Cu and Zn. Detailed physico-chemical evaluation combined with a column leaching test determined the retention of metal(loid)s from soil solution by each amendments. A pot experiment measured metal(loid)s in soil pore water and their uptake to ryegrass when the amendments were mixed into soils at 1 and 5% (w/w). Total Cr and Zn concentrations were reduced furthest in column leachates by the addition of raw material and biochar respectively, compared to the untreated soil; Cr(III) was the predominant specie initially due to rapid acidification of leachates and organic complexation resulting from raw material addition. Loadings of metal(loid)s to the amendments recovered from the post-leached columns were in the order Cu ¼ Zn > Cr ≈ As. In the pot test ryegrass Cr uptake was initiated by the addition of both amendments, compared to the untreated soil, whereas only biochar addition resulted in significant increases in Zn uptake, explained by its significant enhancement of ryegrass biomass yield, especially at 5% dosage; raw material addition significantly decreased biomass yields. Inconsistent relationships between pore water parameters and ryegrass uptake were common to both soils investigated. Therefore, whilst both amendments modified soil metal(loid) geochemistry, their effects differed fundamentally; in environmental risk management terms these results highlight the need to investigate the detailed geochemical response of contaminated soils to diverse organic amendment additions.


Subject(s)
Charcoal , Metals/pharmacokinetics , Soil Pollutants/pharmacokinetics , Soil/chemistry , Agriculture , Biomass , Lolium/metabolism , Plant Stems , Vitis , Water Pollutants, Chemical
17.
Talanta ; 148: 686-93, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26653502

ABSTRACT

An automatic in-vitro bioaccessibility test based upon dynamic microcolumn extraction in a programmable flow setup is herein proposed as a screening tool to evaluate bio-char based remediation of mine soils contaminated with trace elements as a compelling alternative to conventional phyto-availability tests. The feasibility of the proposed system was evaluated by extracting the readily bioaccessible pools of As, Pb and Zn in two contaminated mine soils before and after the addition of two biochars (9% (w:w)) of diverse source origin (pine and olive). Bioaccessible fractions under worst-case scenarios were measured using 0.001 mol L(-1) CaCl2 as extractant for mimicking plant uptake, and analysis of the extracts by inductively coupled optical emission spectrometry. The t-test of comparison of means revealed an efficient metal (mostly Pb and Zn) immobilization by the action of olive pruning-based biochar against the bare (control) soil at the 0.05 significance level. In-vitro flow-through bioaccessibility tests are compared for the first time with in-vivo phyto-toxicity assays in a microcosm soil study. By assessing seed germination and shoot elongation of Lolium perenne in contaminated soils with and without biochar amendments the dynamic flow-based bioaccessibility data proved to be in good agreement with the phyto-availability tests. Experimental results indicate that the dynamic extraction method is a viable and economical in-vitro tool in risk assessment explorations to evaluate the feasibility of a given biochar amendment for revegetation and remediation of metal contaminated soils in a mere 10 min against 4 days in case of phyto-toxicity assays.

18.
Environ Pollut ; 186: 195-202, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24388869

ABSTRACT

Amending contaminated soils with organic wastes can influence trace element mobility and toxicity. Soluble concentrations of metals and arsenic were measured in pore water and aqueous soil extracts following the amendment of a heavily contaminated mine soil with compost and biochar (10% v:v) in a pot experiment. Speciation modelling and toxicity assays (Vibrio fischeri luminescence inhibition and Lolium perenne germination) were performed to discriminate mechanisms controlling metal mobility and assess toxicity risk thereafter. Biochar reduced free metal concentrations furthest but dissolved organic carbon primarily controlled metal mobility after compost amendment. Individually, both amendments induced considerable solubilisation of arsenic to pore water (>2500 µg l(-1)) related to pH and soluble phosphate but combining amendments most effectively reduced toxicity due to simultaneous reductions in extractable metals and increases in soluble nutrients (P). Thus the measure-monitor-model approach taken determined that combining the amendments was most effective at mitigating attendant toxicity risk.


Subject(s)
Arsenic/chemistry , Charcoal/chemistry , Metals/chemistry , Soil Pollutants/chemistry , Arsenic/analysis , Arsenic/toxicity , Environmental Pollution , Environmental Restoration and Remediation/methods , Germination/drug effects , Lolium/drug effects , Metals/analysis , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
19.
Sci Total Environ ; 454-455: 598-603, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23583727

ABSTRACT

Arsenic (As) concentrations in soil, soil pore water and plant tissues were evaluated in a pot experiment following the transplantation of tomato (Solanum lycopersicum L.) plantlets to a heavily As contaminated mine soil (~6000 mg kg(-1) pseudo-total As) receiving an orchard prune residue biochar amendment, with and without NPK fertiliser. An in-vitro test was also performed to establish if tomato seeds were able to germinate in various proportions of biochar added to nutrient solution (MS). Biochar significantly increased arsenic concentrations in pore water (500 µg L(-1)-2000 µg L(-1)) whilst root and shoot concentrations were significantly reduced compared to the control without biochar. Fruit As concentrations were very low (<3 µg kg(-1)), indicating minimal toxicity and transfer risk. Fertilisation was required to significantly increase plant biomass above the control after biochar addition whilst plants transplanted to biochar only were heavily stunted and chlorotic. Given that increasing the amount of biochar added to nutrient solution in-vitro reduced seed germination by up to 40%, a lack of balanced nutrient provision from biochar could be concluded. In summary, solubility and mobility of As were increased by biochar addition to this soil, but uptake to plant was reduced, and toxicity-transfer risk was negligible. Therefore leaching rather than food chain transfer appears the most probable immediate consequence of biochar addition to As contaminated soils.


Subject(s)
Arsenic/metabolism , Charcoal/metabolism , Fertilizers/analysis , Soil Pollutants/metabolism , Solanum lycopersicum/metabolism , Biomass , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Mass Spectrometry , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Soil/chemistry , Spain , Spectrometry, Fluorescence , Water/analysis
20.
J Environ Manage ; 104: 158-65, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22495017

ABSTRACT

Carbon storage (carbon density; kg C m(2)), concentrations of dissolved organic carbon (DOC) in soil pore water and soil respiration (g C m(2) yr(-1)) were measured in a 35 year old urban lawn soil amended with a surface mulch application of green waste compost and compared to those in two newly created urban soils, manufactured by mixing different volumes of green waste compost with existing soils or soil forming materials. The aim was to determine C storage and calculate annual fluxes in two newly created urban soils compared to an existing urban soil, to establish the potential for maintaining and building carbon storage. In the lawn soil, organic carbon storage was largely limited to the upper 15 cm of the soil, with material below 30 cm consisting of substantial amounts of alkaline building debris augmenting sandstone parent material. Leaching of DOC directly from the surface applied compost mulch amendment was readily mobile within the upper 15 cm of soil beneath, but not to 30 cm depth, indicating limited vertical redistribution of the soluble organic C fraction to the deeper, technic horizons. Only a very small proportion of annual C losses were attributable to DOC export (≤ 0.5%) whilst a much greater amount was accounted for by soil respiration (∼20%). In the two newly created urban soils, ≤ 30% additions of compost mixed with existing soil forming materials trebled C densities from <2 to 6 kg total carbon (TC) m(2), surpassing those of the existing lawn soil (≤ 5 kg TC m(2)). Adding 45% compost served only to reduce bulk density so that C densities did not increase further until >50% compost was applied. Combined increases in soil respiration losses and DOC leaching associated with higher compost application rates suggested that volumes of ∼30% compost were altogether optimal for sustainable C storage whilst minimising annual losses. Thus repeated applications of small amounts, rather than single applications of large amounts of green waste compost could be most effective at maintaining and building C storage in urban soils.


Subject(s)
Carbon/chemistry , Environmental Monitoring/methods , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...