Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10253, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704431

ABSTRACT

The tegument protein pp150 of Human Cytomegalovirus (HCMV) is known to be essential for the final stages of virus maturation and mediates its functions by interacting with capsid proteins. Our laboratory has previously identified the critical regions in pp150 important for pp150-capsid interactions and designed peptides similar in sequence to these regions, with a goal to competitively inhibit capsid maturation. Treatment with a specific peptide (PepCR2 or P10) targeted to pp150 conserved region 2 led to a significant reduction in murine CMV (MCMV) growth in cell culture, paving the way for in vivo testing in a mouse model of CMV infection. However, the general pharmacokinetic parameters of peptides, including rapid degradation and limited tissue and cell membrane permeability, pose a challenge to their successful use in vivo. Therefore, we designed a biopolymer-stabilized elastin-like polypeptide (ELP) fusion construct (ELP-P10) to enhance the bioavailability of P10. Antiviral efficacy and cytotoxic effects of ELP-P10 were studied in cell culture, and pharmacokinetics, biodistribution, and antiviral efficacy were studied in a mouse model of CMV infection. ELP-P10 maintained significant antiviral activity in cell culture, and this conjugation significantly enhanced P10 bioavailability in mouse tissues. The fluorescently labeled ELP-P10 accumulated to higher levels in mouse liver and kidneys as compared to the unconjugated P10. Moreover, viral titers from vital organs of MCMV-infected mice indicated a significant reduction of virus load upon ELP-P10 treatment. Therefore, ELP-P10 has the potential to be developed into an effective antiviral against CMV infection.


Subject(s)
Antiviral Agents , Cytomegalovirus Infections , Elastin , Muromegalovirus , Peptides , Phosphoproteins , Viral Matrix Proteins , Animals , Elastin/chemistry , Elastin/metabolism , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Mice , Antiviral Agents/pharmacology , Antiviral Agents/pharmacokinetics , Antiviral Agents/chemistry , Peptides/pharmacology , Peptides/chemistry , Muromegalovirus/drug effects , Humans , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Cytomegalovirus/drug effects , Capsid/metabolism , Capsid/drug effects , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/pharmacokinetics , Disease Models, Animal , Elastin-Like Polypeptides
2.
iScience ; 25(7): 104549, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35702569

ABSTRACT

We report robust SARS-CoV2 neutralizing sdAbs targeting the viral peptides encompassing the polybasic cleavage site (CSP) and in the receptor binding domain (RBD) of the spike (S) protein. Both the sdAbs inhibited infectivity of the CoV2 S protein expressing pseudoviruses (LV-CoV2S). Both anti-CSP and RBD intrabodies (IB) inhibited the output of LV(CoV2 S). Anti-CSP IB altered the proteolytic processing and targeted the viral S protein for degradation. Because of cross-reactive CSPs in the entry mediators, the anti-CSP sdAb neutralized in vitro and in vivo the infectivity of SARS-CoV2 unrelated viruses such as herpes simplex virus 1 (HSV1) and pestes des petits ruminants virus (PPRV). Conversely, anti-HSV1 and anti-PPRV sera neutralized LV(CoV2 S) owing to the presence of CSP reactive antibodies indicating that a prior infection with such pathogens could impact on the pattern of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...