Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Drug Discov Today ; 28(5): 103555, 2023 05.
Article in English | MEDLINE | ID: mdl-36931386

ABSTRACT

Tailoring drug products to personalized medicines poses challenges for conventional dosage forms. The prominent reason is the restricted availability of flexible dosage strengths in the market. Inappropriate dosage strengths lead to adverse drug reactions or compromised therapeutic effects. The situation worsens when the drug has a narrow therapeutic window. To overcome these challenges, data-enriched edible pharmaceuticals (DEEP) are novel concepts for designing solid oral products. DEEP have individualized doses and information embedded in quick response (QR) code form. When data are presented in a QR code, the information is printed with edible ink that contains the drug in tailored doses required for the patients.


Subject(s)
Drug Delivery Systems , Precision Medicine , Humans , Pharmaceutical Preparations , Technology, Pharmaceutical , Dosage Forms
2.
J Chromatogr Sci ; 61(4): 329-338, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36644892

ABSTRACT

The current research work describes the development of a simple, fast, sensitive and efficient bioanalytical UPLC/MS-MS method for the simultaneous estimation of diclofenac and resveratrol in mice skin samples. Quetiapine was used as an internal standard (IS). Analytical separation was performed on ACQUITY UPLC C18 Column (2.1 × 100 mm; 1.7 µm) using ammonium acetate (5 mM) in water and methanol (B) with isocratic elution at ratio of (50, 50 v/v) and flow rate of 0.4 mL/min. The duration of separation was maintained for 3 min. Electrospray ionization mass spectrometry in a positive and negative ionization mode was used for detection. Selective ion mode monitoring was used for the quantification of m/z 296.025> 249.93 for diclofenac, m/z 229.09 > 143.03 for resveratrol and MRM/ES+ve mode applied in m/z 384.25> 253.189 for IS transitions from parent to daughter ion. The lower detection and quantification limits were accomplished, and precision (repeatability and intermediate precision) with a coefficient of variation below 10% produced satisfactory results. The developed bioanalytical method was found to be useful for its suitability for the dermatokinetic evaluation of treatments through rat skin. Improvement in AUC (1.58-fold for diclofenac and 1.60-fold for resveratrol) and t1/2 in the dermis (2.13 for diclofenac and 2.21-fold for resveratrol) followed by epidermis was observed for diclofenac and resveratrol-loaded liposomal gel formulation over the conventional gel. Overall, the developed method for the dermatokinetic studies of the above-mentioned dual drugs-loaded liposome gel was found to be reproducible and effective for bioanalytical.


Subject(s)
Skin , Liposomes/chemistry , Gels/chemistry , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Animals , Mice , Skin/chemistry , Diclofenac/chemistry , Resveratrol/chemistry , Calibration
3.
Biotechnol Appl Biochem ; 70(1): 51-67, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35262954

ABSTRACT

The present work involved development of phospholipid-based permeation enhancing nanovesicles (PENVs) for topical delivery of ketoprofen. Screening of phospholipids and process parameters was performed. Central composite design was used for optimization of factors, that is, amount (%, w/w) of phospholipid and ethanol at three levels. The optimized nanovesicles (NVs) were loaded with different terpenes and then incorporated into a gel base. Optimized NVs exhibited 69% entrapment efficiency, 51% transmittance, 328 nm mean vesicle size, and polydispersity index of 0.25. In vitro release kinetics evaluation indicated best fitting as per Korsemeyer-Peppa's model and drug release via Fickian-diffusion mechanism. The optimized NVs loaded with mint terpene showed minimal degree of deformability and maximal elasticity as compared with the conventional NVs and liposomes. Rheology and texture analysis indicated pseudoplastic flow and smooth texture of the vesicle gel formulation. Ex vivo permeation studies across Wistar rat skin indicated low penetration (0.43-fold decrease) and high skin retention (4.26-fold increase) of ketoprofen from the optimized PENVs gel vis-à-vis the conventional gel. Skin irritancy study indicated lower scores for PENVs gel construing its biocompatible nature. Stability studies confirmed cold storage is best suitable for vesicle gel, and optimized PENVs were found to be suitable for topical delivery of ketoprofen.


Subject(s)
Ketoprofen , Rats , Animals , Ketoprofen/metabolism , Skin Absorption , Administration, Cutaneous , Phospholipids/metabolism , Rats, Wistar , Drug Delivery Systems , Skin , Liposomes/metabolism , Drug Carriers , Particle Size
4.
Drug Discov Today ; 28(1): 103420, 2023 01.
Article in English | MEDLINE | ID: mdl-36309193

ABSTRACT

The handedness of chiral-engineered supraparticles (CE-SPs) influences their interactions with cells and proteins, as evidenced by the increased penetration of breast, cervical, and myeloma cell membranes by d-chirality-coordinated SPs. Quartz crystal dissipation and isothermal titration calorimetry have been used to investigate such chiral-specific interactions. d-SPs are more thermodynamically stable compared with l-SPs in terms of their adhesion. Proteases and other endogenous proteins can be shielded by the opposite chirality of d-SPs, resulting in longer half-lives. Incorporating nanosystems with d-chirality increases uptake by cancer cells and prolongs in vivo stability, demonstrating the importance of chirality in biomaterials. Thus, as we discuss here, chiral nanosystems could enhance drug delivery systems, tumor markers, and biosensors, among other biomaterial-based technologies, by allowing for better control over their features.


Subject(s)
Biocompatible Materials , Drug Delivery Systems
6.
ACS Omega ; 7(48): 43499-43509, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36506117

ABSTRACT

This study describes the development and characterization of curcumin with graphene oxide complex (CUR + GO) loaded into liposomes for treating skin disease. The developed complex was characterized by X-ray diffraction and showed a broad halo pattern, confirming the amorphous nature of the resulting complex. Furthermore, scanning electron microscopy revealed the irregular porous morphology of the complex-highlighting loss of the crystallinity and the emergence of the amorphous phase. Additionally, the liposomes showed long-term stability at 2-8 °C and 25 ± 2 °C/60 ± 5%RH with nonsignificant variations in the particle size, polydispersity index, and zeta potential. Overall, optical and high-resolution transmission electron microscopy images of liposomes showed a consistent shape, and no aggregation with uniform particle size distribution was observed. Furthermore, the cumulative drug release in the first 6 h was 71.24 and 64.24% for CUR-loaded liposomes and CUR-GO-loaded liposomes, respectively. The lower value of drug release might be attributed to the complex development. The drug release model found the first order with non-Fickian diffusion process, which is often observed at higher n > 0.5. The antibacterial activity of the CUR with GO-loaded liposome (D2) offered higher anti-microbial activity over other formulations against the mentioned bacterial microorganism that causes skin diseases.

8.
Biomaterials ; 289: 121805, 2022 10.
Article in English | MEDLINE | ID: mdl-36162213

ABSTRACT

Treatment of Ischemic Stroke is inordinately challenging due to its complex aetiology and constraints in shuttling therapeutics across blood-brain barrier. Ropinirole hydrochloride (Rp), a propitious neuroprotectant with anti-oxidant, anti-inflammatory, and anti-apoptotic properties (3A) is repurposed for remedying ischemic stroke and reperfusion (I/R) injury. The drug's low bioavailability in brain however, limits its therapeutic efficacy. The current research work has reported sub-100 nm gamma-L-Glutamyl-L-Cysteine coated Human Serum Albumin nanoparticles encapsulating Rp (C-Rp-NPs) for active targeting in ischemic brain to encourage in situ activity and reduce unwanted toxicities. Confocal microscopy and brain distribution studies confirmed the enhanced targeting potentiality of optimized C-Rp-NPs. The pharmacokinetics elucidated that C-Rp-NPs could extend Rp retention in systemic circulation and escalate bioavailability compared with free Rp solution (Rp-S). Additionally, therapeutic assessment in transient middle cerebral occlusion (tMCAO) model suggested that C-Rp-NPs attenuated the progression of I/R injury with boosted therapeutic index at 1000 times less concentration compared to Rp-S via reinstating neurological and behavioral deficits, while reducing ischemic neuronal damage. Moreover, C-Rp-NPs blocked mitochondrial permeability transition pore (mtPTP), disrupted apoptotic mechanisms, curbed oxidative stress and neuroinflammation, and elevated dopamine levels post tMCAO. Thus, our work throws light on fabrication of rationally designed C-Rp-NPs with enormous clinical potential.


Subject(s)
Brain Ischemia , Ischemic Stroke , Neuroprotective Agents , Reperfusion Injury , Antioxidants/therapeutic use , Brain , Brain Ischemia/drug therapy , Cysteine/therapeutic use , Dopamine/therapeutic use , Humans , Indoles , Infarction, Middle Cerebral Artery/drug therapy , Mitochondrial Permeability Transition Pore , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Reperfusion Injury/drug therapy , Serum Albumin, Human/therapeutic use
9.
Pharmaceutics ; 14(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36145519

ABSTRACT

This work aimed to develop dual drug-loaded nanostructured lipid carriers of raloxifene and naringin (RLX/NRG NLCs) for breast cancer. RLX/NRG NLCs were prepared using Compritol 888 ATO and oleic acid using a hot homogenization-sonication method and optimized using central composite design (CCD). The optimized RLX/NRG NLCs were characterized and evaluated using multiple technological means. The optimized RLX/NRG NLCs exhibited a particle size of 137.12 nm, polydispersity index (PDI) of 0.266, zeta potential (ZP) of 25.9 mV, and entrapment efficiency (EE) of 91.05% (raloxifene) and 85.07% (naringin), respectively. In vitro release (81 ± 2.2% from RLX/NRG NLCs and 31 ± 1.9% from the RLX/NRG suspension for RLX and 93 ± 1.5% from RLX/NRG NLCs and 38 ± 2.01% from the RLX/NRG suspension for NRG within 24 h). Concurrently, an ex vivo permeation study exhibited nearly 2.3 and 2.1-fold improvement in the permeability profiles of RLX and NRG from RLX/NRG NLCs vis-à-vis the RLX/NRG suspension. The depth of permeation was proved with CLSM images which revealed significant permeation of the drug from the RLX/NRG NLCs formulation, 3.5-fold across the intestine, as compared with the RLX/NRG suspension. An in vitro DPPH antioxidant study displayed a better antioxidant potential of RLX/NRG in comparison to RLX and NRG alone due to the synergistic antioxidant effect of RLX and NRG. An acute toxicity study in Wistar rats showed the safety profile of the prepared nanoformulations and their excipients. Our findings shed new light on how poorly soluble and poorly permeable medicines can be codelivered using NLCs in an oral nanoformulation to improve their medicinal performance.

10.
J Chromatogr Sci ; 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35989674

ABSTRACT

A validated ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the first-ever simultaneous analysis of neratinib, curcumin and internal standard (imatinib) using acetonitrile as the liquid-liquid extraction medium. On a BEH C18 (100 mm × 2.1 mm, 1.7 µm) column, the analytes were separated isocratically using acetonitrile (0.1% formic acid):0.002M ammonium acetate. The flow rate was set at 0.5 mL.min-1. The authors utilized multiple reaction monitoring-based transitions for the precursor-to-product ion with m/z 557.099 â†’ 111.928 for neratinib, m/z 369.231 â†’ 176.969 curcumin and m/z 494.526 â†’ 394.141 for imatinib during the study. Validation of the method as per United States Food and Drug Administration requirements for linearity (5-40 ng mL-1), accuracy and precision, stability, matrix effect, etc. were investigated and were observed to be acceptable. Afterward, we evaluated the method for establishing its greenness profile by using two greenness assessment tools and found it green. Overall, a reliable green UPLC-MS/MS method was devised and used to estimate neratinib and curcumin in human plasma simultaneously.

11.
Drug Discov Today ; 27(10): 103314, 2022 10.
Article in English | MEDLINE | ID: mdl-35798227

ABSTRACT

During the past two decades, the era of digitalization in pharmaceutical device manufacturing has gained significant momentum for maintaining human health. From various available technologies, internet of things (IoT) sensors are being increasingly used as wearable devices (e.g., smart watches, wrist bands, mobile phones, tablets, implantable pumps, etc.) that enable real-time monitoring of data. Such devices are integrated with smart materials that typically monitor the real-time data (blood pressure, blood sugar, heart and pulse rate, cytokine levels, etc.) to advise patients and physicians. Hence, there has been a great demand for wearable devices as potential tools for remote clinical trial monitoring in cancers and other diseases and they are proving to be very cost-effective.


Subject(s)
Neoplasms , Smart Materials , Wearable Electronic Devices , Delivery of Health Care , Humans , Monitoring, Physiologic , Neoplasms/diagnosis , Neoplasms/drug therapy
12.
ACS Omega ; 7(20): 16968-16979, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35647451

ABSTRACT

In the present work, an attempt was undertaken to improve the oral bioavailability and anticancer activity of abiraterone acetate. Solid lipid nanoparticles (SLNs) were developed using the quality by design (QbD) principles and evaluated through in vitro, ex vivo, and in vivo studies. Solid lipid suitability was evaluated by equilibrium solubility study, while surfactant and cosurfactant were screened based on the ability to form microemulsion with the selected lipid. SLNs were prepared by emulsion/solvent evaporation method using glyceryl monostearate, Tween 80, and Poloxamer 407 as the solid lipid, surfactant, and cosurfactant, respectively. Box-Behnken design was applied for optimization of material attributes and evaluating their impact on particle size, polydispersity index, zeta potential, and entrapment efficiency of the SLNs. In vitro drug release study was evaluated in simulated gastric and intestinal fluids. Cell culture studies on PC-3 cells were performed to evaluate the cytotoxicity of the drug-loaded SLNs in comparison to the free drug suspension. Qualitative uptake was evaluated for Rhodamine B-loaded SLNs and compared with free dye solution. Ex vivo permeability was evaluated on Wistar rat intestine and in vivo pharmacokinetic evaluation on Wistar rats for SLNs and free drug suspension. Concisely, the SLNs showed potential for significant improvement in the biopharmaceutical performance of the selected drug candidate over the existing formulations of abiraterone acetate.

13.
Drug Discov Today ; 27(9): 2415-2424, 2022 09.
Article in English | MEDLINE | ID: mdl-35697283

ABSTRACT

Ionic liquids (ILs) are widely used as solvents, co-solvents and permeation enhancers in the biomedical and pharmaceutical fields. There are many advantages to using active pharmaceutical ingredients (APIs) in the production of ILs for drug delivery, including the ability to tailor solubility, improve thermal stability, increase dissolution, regulate drug release, improve API permeability, and modulate cytotoxicity on tumor cells. Such an approach has shown significant potential as a tool for drug delivery. As a result, APIs converted into ILs are used as active components in solutions, emulsions, and even nanoparticles (NPs). In this review, we explore the use and physiochemical characteristics of APIs via ILs, including improvements of their physicochemical properties in preformulation and formulation development.


Subject(s)
Ionic Liquids , Drug Delivery Systems , Emulsions , Pharmaceutical Preparations , Solubility , Solvents
14.
Curr Drug Metab ; 23(8): 587-602, 2022.
Article in English | MEDLINE | ID: mdl-35657282

ABSTRACT

Despite the great efforts that have been achieved in breast cancer treatment, it remains a significant cause of death in women and is a serious health problem. Treatment with chemotherapy drugs faces various challenges, such as toxicity and chemoresistance to chemotherapeutic drugs, which hinder their therapeutic success and clinical experiments. This review focuses on targeting nanocarrier approaches to target chemotherapy drugs to receptor targets that are overexpressed on the surface of breast cancer cells. In particular, the most commonly targeted nanocarriers for the chemotherapeutic agents examined by the different researcher groups, such as liposomes, dendrimers, polymeric micelles, lipid particulates, polymeric nanoparticles, and carbon nanotubes, have been reviewed. Moreover, we summarized the molecular receptors or targets that are the most commonly overexpressed in breast cancer cells and the natural and synthetic ligands studied for use as targeting moieties to functionalize chemotherapeutically loaded nanocarriers for potential specific breast cancer targeting.


Subject(s)
Breast Neoplasms , Nanotubes, Carbon , Female , Humans , Breast Neoplasms/drug therapy , Nanotechnology
15.
Curr Drug Metab ; 23(8): 616-629, 2022.
Article in English | MEDLINE | ID: mdl-35713126

ABSTRACT

The pharmaceutical industry is moving towards the future and is witnessing innovation in drug development through the introduction of personalized medicine technologies. Instead of adapting the dose thata patient needs, they were adapted to the manufacturer's dose. Nowpatient-specific or customized dosing methods and dosing combinations have superior persistence to the standard mass-produced drugs. Printing technology has gained interest during the last few years to manufacture personalized dosage forms. For manufacturing personalized drug products, three-dimensional printing (3DP) has expanded to the pharmaceutical industry. With the approval of the first 3DP product, an unprecedented opportunity for discovering new compounds and technologies has arisen. This article has re-evaluated various printing technology and theirutilization in personalized medicines. Further, we also discussed its history, advantages, challenges and differenttypes of printing technologies with advantages and limitations, particularly in the area of pharmaceutical research.


Subject(s)
Biological Products , Humans , Pharmaceutical Preparations
16.
Article in English | MEDLINE | ID: mdl-35533423

ABSTRACT

The described work entails the development of a simple, sensitive, green, and robust high-performance liquid chromatographic (HPLC) method for simultaneous estimation of temozolomide (TMZ) and γ-linolenic acid (GLA). The chemometric factor screening study helped identify the critical method parameters optimized using Box-Behnken design for improved understanding and enhancing the method performance. Chromatographic separation was performed on a Kinetex® C18 column (150 × 4.6 mm, 5 µm particle size) using methanol: water (pH adjusted to 3.5 using 0.5% v/v O-phosphoric acid) as the mobile phase at 0.5 mL/min flow rate and diode array detection between 210 and 360 nm. The linearity of the method was observed for concentrations of TMZ and GLA ranging between 1 and 100 µg.mL-1 (R2 = 0.999, p < 0.05). Accuracy evaluation showed good percent recovery within 97.9-100%, while intra- and inter-day precision showed RSD values within 0.37%-1.01%. The limit of detection and quantification for TMZ was found to be 0.75 and 1.0 µg.mL-1, respectively, while the values 0.55 and 1.0 µg.mL-1, respectively, were observed for GLA. System suitability (96.9-102.8%), its limits, and robustness evaluation indicated good percent recovery within, while RSD values were found to be within the acceptable limit of less than 2%. The method was specific for its ability to detect the analytes and their degradation products during forced degradation studies, which also indicated that TMZ was highly prone to alkaline conditions while GLA showed mild degradation in all the studied conditions. The estimation of both the analytes from lipid nanoparticles formulation showed good values for total drug content (82.6-85.3%), entrapment efficiency (95.4 to 98.7%), and drug loading (25.2 to 38.4%). Overall, the results indicated that the developed method was reliable for its accuracy, precision, sensitivity, and specificity for simultaneous estimation of the analytes. The method was found to be stability-indicating in nature and suitable for simultaneous estimation of TMZ and GLA from the developed nanoparticles formulation. Further, employing a greenness assessment approach established the method greenness.


Subject(s)
Nanoparticles , gamma-Linolenic Acid , Chemometrics , Chromatography, High Pressure Liquid/methods , Liposomes , Reproducibility of Results , Temozolomide
17.
ACS Omega ; 7(11): 9452-9464, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35350323

ABSTRACT

The present work describes the development and characterization of liquid crystalline nanoparticles of hispolon (HP-LCNPs) for treating hepatocellular carcinoma. HP-LCNPs were prepared by a top-down method utilizing GMO as the lipid and Pluronic F-127 as the polymeric stabilizer. The prepared formulations (HP1-HP8) were tested for long-term stability, where HP5 showed good stability with a particle size of 172.5 ± 0.3 nm, a polydispersity index (PDI) of 0.38 ± 0.31 nm, a zeta potential of -10.12 mV ± 0.05, an entrapment efficiency of 86.81 ± 2.5%, and a drug loading capacity of 12.51 ± 1.12%. Optical photomicrography and transmission electron microscopy images demonstrated a consistent, low degree of aggregation and a spherical shape of LCNPs. The effect of temperature and pH on the optimized formulation (HP5) indicated good stability at 45 °C and at pH between 2 and 5. In vitro gastrointestinal stability indicated no significant change in the particle size, PDI, and entrapment efficiency of the drug. The drug release study exhibited a biphasic pattern in simulated gastric fluid (pH 1.2) for 2 h and simulated intestinal fluid (pH 7.4) for up to 24 h, while the best fitting of the profile was observed with the Higuchi model, indicating the Fickian diffusion mechanism. The in vivo pharmacokinetic study demonstrated nearly 4.8-fold higher bioavailability from HP5 (AUC: 1774.3 ± 0.41 µg* h/mL) than from the HP suspension (AUC: 369.11 ± 0.11 µg* h/mL). The anticancer activity evaluation revealed a significant improvement in antioxidant parameters and serum hepatic biomarkers (SGOT, SGPT, ALP, total bilirubin, and GGT) in the diethyl nitrosamine-treated group of rats with the optimized LCNP formulation (HP5) vis-à-vis HP suspension.

18.
AAPS PharmSciTech ; 23(3): 77, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35194725

ABSTRACT

This study reports the formulation of mupirocin-loaded chitosan microspheres embedded in Piper betle extract containing collagen scaffold as combinational drug delivery for improved wound healing. Selection of chitosan type (molecular weight and degree of deacetylation) was carried out based on their antibacterial efficacy. The low molecular weight chitosan was selected owing to the highest antibacterial action against gram-positive as well as gram-negative bacteria. Low molecular weight chitosan-microspheres showed spherical shape with largely smooth surface morphology, 11.81% of mupirocin loading, and its controlled release profile. The XRD, DSC thermograms, and FT-IR spectral analysis revealed the mupirocin loaded in molecularly dispersed or in amorphous form, and having no chemical interactions with the chitosan matrix, respectively. The in vivo study indicates potential effect of the mupirocin, Piper betle, and chitosan in the collagen scaffold in the wound healing efficiency with approximately 90% wound healing observed at the end of 15 days of study for combinational drug-loaded chitosan microspheres-collagen scaffold-treated group. The histopathology examination further revealed tissue lined by stratified squamous epithelium, collagen deposition, fibroblastic proliferation, and absence of inflammation indicating relatively efficient wound healing once treated with combinational drug-loaded chitosan microspheres containing scaffold.


Subject(s)
Chitosan , Mupirocin , Piper betle , Plant Extracts , Wound Healing/drug effects , Animals , Chitosan/chemistry , Collagen/chemistry , Microspheres , Mupirocin/pharmacology , Piper betle/chemistry , Plant Extracts/pharmacology , Rats, Wistar , Spectroscopy, Fourier Transform Infrared
19.
Curr Pharm Des ; 28(8): 595-608, 2022.
Article in English | MEDLINE | ID: mdl-35040411

ABSTRACT

Microsponges delivery systems (MDS) are highly porous, cross-linked polymeric systems that activate due to temperature, pH, or when rubbed. MDS offer a wide range of advantages, like controlled drug release, site-specific action, stability over a broad range of pH, less irritation, cost-effectiveness, and improved patient compliance. They can be transformed into various dosage forms like creams, gels, and lotions. MDS are suitable for the treatment of topical disorders like acne, psoriasis, dandruff, eczema, scleroderma, hair loss, skin cancer, and other dreadful diseases. The applications of MDS in drug delivery are not limited to topical drug delivery but are also explored for oral, parenteral, and pulmonary drug deliveries. Microsponges have been studied for colon targeting of drugs and genes. Additionally, MDS have several applications such as sunscreen, cosmetics, and over-the-counter (OTC) products. Furthermore, MDS do not actuate any irritation, genotoxicity, immunogenicity, or cytotoxicity. Therefore, this review extensively highlights microsponges, their advantages, key factors affecting their characteristics, their therapeutic applications in topical disorders and in cancer, their use as cosmetics, as well as recent advances in MDS and the associated challenges.


Subject(s)
Drug Delivery Systems , Polymers , Emulsions , Gels , Humans , Porosity
20.
J Chromatogr Sci ; 60(6): 559-570, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-34318311

ABSTRACT

A chemometrics-oriented green ultra-performance liquid chromatography-mass spectrometry/mass spectrometry method was developed and validated for the first-time simultaneous estimation of capecitabine (CAP) and lapatinib (LPB) along with imatinib (as internal standard (IS)) in rat plasma. Analytes were extracted using ethyl acetate as the liquid-liquid extraction media. In the pre-development phase, principles of analytical eco-scale were used to confirm method greenness. Subsequently, vital method variables, influencing method robustness and performance, were optimized using a chemometrics-based quality-by-design approach. Chromatography was achieved on a BEH C18 (100 × 2.1 mm, 1.7 µm) using isocratic flow (0.5 mL.min-1) of mobile phase acetonitrile (0.1% formic acid):0.002 M ammonium acetate in water as the mobile phase. The mass spectrometric detections were carried out in multiple reaction monitoring modes with precursor-to-product ion transitions with m/z 360.037 → 244.076 for CAP, m/z 581.431 → 365.047 LPB and m/z 494.526 → 394.141 for IS. The bioanalytical method validation studies were performed, ensuring regulatory compliance. Linearity (r2> 0.99) over analyte concentrations ranging from 5 and 40 ng.mL-1 was observed, while acceptable values were obtained for all other validation parameters. In a nutshell, a robust and green bioanalytical method was developed and applied for the simultaneous estimation of two anticancer agents from rat plasma.


Subject(s)
Chemometrics , Tandem Mass Spectrometry , Animals , Capecitabine , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Lapatinib , Rats , Reproducibility of Results , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...