Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Adh Migr ; 18(1): 1-13, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38566311

ABSTRACT

Desmosomes are intercellular junctions that regulate mechanical integrity in epithelia and cardiac muscle. Dynamic desmosome remodeling is essential for wound healing and development, yet the mechanisms governing junction assembly remain elusive. While we and others have shown that cadherin ectodomains are highly organized, how this ordered architecture emerges during assembly is unknown. Using fluorescence polarization microscopy, we show that desmoglein 2 (Dsg2) ectodomain order gradually increases during 8 h of assembly, coinciding with increasing adhesive strength. In a scratch wound assay, we observed a similar increase in order in desmosomes assembling at the leading edge of migratory cells. Together, our findings indicate that cadherin organization is a hallmark of desmosome maturity and may play a role in conferring adhesive strength.


Subject(s)
Desmoglein 2 , Desmosomes , Cadherins , Intercellular Junctions , Cell Adhesion
2.
J Biol Chem ; 298(4): 101726, 2022 04.
Article in English | MEDLINE | ID: mdl-35157848

ABSTRACT

Heterogeneity within the glycocalyx influences cell adhesion mechanics and signaling. However, the role of specific glycosylation subtypes in influencing cell mechanics via alterations of receptor function remains unexplored. It has been shown that the addition of sialic acid to terminal glycans impacts growth, development, and cancer progression. In addition, the sialyltransferase ST6Gal-I promotes epidermal growth factor receptor (EGFR) activity, and we have shown EGFR is an 'allosteric mechano-organizer' of integrin tension. Here, we investigated the impact of ST6Gal-I on cell mechanics. Using DNA-based tension gauge tether probes of variable thresholds, we found that high ST6Gal-I activity promotes increased integrin forces and spreading in Cos-7 and OVCAR3, OVCAR5, and OV4 cancer cells. Further, employing inhibitors and function-blocking antibodies against ß1, ß3, and ß5 integrins and ST6Gal-I targets EGFR, tumor necrosis factor receptor, and Fas cell surface death receptor, we validated that the observed phenotypes are EGFR-specific. We found that while tension, contractility, and adhesion are extracellular-signal-regulated kinase pathway-dependent, spreading, proliferation, and invasion are phosphoinositide 3-kinase-Akt serine/threonine kinase dependent. Using total internal reflection fluorescence microscopy and flow cytometry, we also show that high ST6Gal-I activity leads to sustained EGFR membrane retention, making it a key regulator of cell mechanics. Our findings suggest a novel sialylation-dependent mechanism orchestrating cellular mechanics and enhancing cell motility via EGFR signaling.


Subject(s)
Ovarian Neoplasms , Sialyltransferases , Cell Line, Tumor , Cell Movement , ErbB Receptors/metabolism , Female , Humans , Integrins/metabolism , Ovarian Neoplasms/enzymology , Ovarian Neoplasms/physiopathology , Phosphatidylinositol 3-Kinases/metabolism , Sialyltransferases/metabolism , beta-D-Galactoside alpha 2-6-Sialyltransferase
3.
Tissue Barriers ; 10(4): 2017225, 2022 10 02.
Article in English | MEDLINE | ID: mdl-34983311

ABSTRACT

Desmosomes are macromolecular cell-cell junctions critical for maintaining adhesion and resisting mechanical stress in epithelial tissue. Desmosome assembly and the relationship between maturity and molecular architecture are not well understood. To address this, we employed a calcium switch assay to synchronize assembly followed by quantification of desmosome nanoscale organization using direct Stochastic Optical Reconstruction Microscopy (dSTORM). We found that the organization of the desmoplakin rod/C-terminal junction changed over the course of maturation, as indicated by a decrease in the plaque-to-plaque distance, while the plaque length increased. In contrast, the desmoplakin N-terminal domain and plakoglobin organization (plaque-to-plaque distance) were constant throughout maturation. This structural rearrangement of desmoplakin was concurrent with desmosome maturation measured by E-cadherin exclusion and increased adhesive strength. Using two-color dSTORM, we showed that while the number of individual E-cadherin containing junctions went down with the increasing time in high Ca2+, they maintained a wider desmoplakin rod/C-terminal plaque-to-plaque distance. This indicates that the maturation state of individual desmosomes can be identified by their architectural organization. We confirmed these architectural changes in another model of desmosome assembly, cell migration. Desmosomes in migrating cells, closest to the scratch where they are assembling, were shorter, E-cadherin enriched, and had wider desmoplakin rod/C-terminal plaque-to-plaque distances compared to desmosomes away from the wound edge. Key results were demonstrated in three cell lines representing simple, transitional, and stratified epithelia. Together, these data suggest that there is a set of architectural programs for desmosome maturation, and we hypothesize that desmoplakin architecture may be a contributing mechanism to regulating adhesive strength.


Subject(s)
Calcium , Desmosomes , Desmosomes/chemistry , Desmosomes/metabolism , gamma Catenin/analysis , gamma Catenin/metabolism , Desmoplakins/analysis , Desmoplakins/metabolism , Calcium/analysis , Calcium/metabolism , Cadherins/metabolism
4.
Methods Mol Biol ; 2367: 305-315, 2021.
Article in English | MEDLINE | ID: mdl-33225407

ABSTRACT

Desmosomes are cell-cell junctions responsible for mechanically integrating adjacent cells. Due to the small size of the junctions, their protein architecture cannot be elucidated using conventional fluorescence microscopy. Super-resolution microscopy techniques, including dSTORM, deliver higher-resolution images which can reveal the localization or arrangement of proteins within individual desmosomes. Herein we describe an imaging and analysis method to determine the nanoscale architecture of desmosomes using super-resolution dSTORM.


Subject(s)
Desmosomes , Microscopy, Fluorescence , Proteins
5.
J Cell Biol ; 219(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32399559

ABSTRACT

Desmosomes are cell-cell junctions that provide mechanical integrity to epithelial and cardiac tissues. Desmosomes have two distinct adhesive states, calcium-dependent and hyperadhesive, which balance tissue plasticity and strength. A highly ordered array of cadherins in the adhesive interface is hypothesized to drive hyperadhesion, but how desmosome structure confers adhesive state is still elusive. We employed fluorescence polarization microscopy to show that cadherin order is not required for hyperadhesion induced by pharmacologic and genetic approaches. FRAP experiments in cells treated with the PKCα inhibitor Gö6976 revealed that cadherins, plakoglobin, and desmoplakin have significantly reduced exchange in and out of hyperadhesive desmosomes. To test whether this was a result of enhanced keratin association, we used the desmoplakin mutant S2849G, which conferred reduced protein exchange. We propose that inside-out regulation of protein exchange modulates adhesive function, whereby proteins are "locked in" to hyperadhesive desmosomes while protein exchange confers plasticity on calcium-dependent desmosomes, thereby providing rapid control of adhesion.


Subject(s)
Calcium/metabolism , Cell Adhesion , Desmoglein 3/metabolism , Desmoplakins/metabolism , Desmosomes/metabolism , Keratinocytes/metabolism , Cadherins/genetics , Cadherins/metabolism , Calcium/pharmacology , Carbazoles/pharmacology , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cell Line , Desmoglein 3/genetics , Desmoplakins/genetics , Desmosomes/drug effects , Desmosomes/ultrastructure , Humans , Keratinocytes/drug effects , Microscopy, Electron , Microscopy, Fluorescence , Mutation , Phosphorylation , Protein Binding/genetics , Protein Kinase C-alpha/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , gamma Catenin/genetics , gamma Catenin/metabolism
6.
Mol Cancer Ther ; 16(4): 591-600, 2017 04.
Article in English | MEDLINE | ID: mdl-28138028

ABSTRACT

EGFR inhibition and radiotherapy are potent inducers of DNA damage. Checkpoint kinases 1 and 2 (Chk1/2) are critical regulators of the DNA-damage response, controlling cell-cycle checkpoints that may permit recovery from therapy-associated genomic stress. We hypothesized that Chk1/2 inhibition (CHKi) with prexasertib may enhance cytotoxicity from EGFR inhibition plus radiotherapy in head and neck squamous cell carcinoma (HNSCC). In this study, we found that the addition of CHKi to the EGFR inhibitor cetuximab with and without radiotherapy significantly decreased cell proliferation and survival fraction in human papillomavirus virus (HPV)-positive and HPV-negative HNSCC cell lines. Reduced proliferation was accompanied by decreased checkpoint activation, induced S-phase accumulation, persistent DNA damage, and increased caspase cleavage and apoptosis. Importantly, a significant tumor growth delay was observed in vivo in both HPV-positive and HPV-negative cell line xenografts receiving triple combination therapy with CHKi, cetuximab, and radiotherapy without a concomitant increase in toxicity as assessed by mouse body weight. Taken together, the combination of CHKi with cetuximab plus irradiation displayed significant antitumor effects in HNSCCs both in vitro and in vivo, suggesting that this combination therapy may increase clinical benefit. A clinical trial to test this treatment for patients with head and neck cancer is currently ongoing (NCT02555644). Mol Cancer Ther; 16(4); 591-600. ©2017 AACR.


Subject(s)
Antineoplastic Agents/administration & dosage , Carcinoma, Squamous Cell/therapy , Cetuximab/administration & dosage , Chemoradiotherapy/methods , Head and Neck Neoplasms/therapy , Pyrazines/administration & dosage , Pyrazoles/administration & dosage , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/virology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Cetuximab/pharmacology , Checkpoint Kinase 1/antagonists & inhibitors , Checkpoint Kinase 2/antagonists & inhibitors , Combined Modality Therapy , DNA Damage , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/virology , Humans , Mice , Pyrazines/pharmacology , Pyrazoles/pharmacology , Squamous Cell Carcinoma of Head and Neck , Xenograft Model Antitumor Assays
7.
Redox Biol ; 8: 136-48, 2016 08.
Article in English | MEDLINE | ID: mdl-26774751

ABSTRACT

Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study demonstrates for the first time that mitochondrial thiol modification inhibits metabolism via inhibition of both aconitase and GAC in a breast cancer cell model.


Subject(s)
Breast Neoplasms/metabolism , Energy Metabolism , Mitochondria/metabolism , Sulfhydryl Compounds/metabolism , Adenosine Triphosphate/metabolism , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Glutaminase/metabolism , Humans , Metabolome , Metabolomics/methods , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...