Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Cell Sci ; 137(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38334041

ABSTRACT

Cells have evolved intricate mechanisms for dividing their contents in the most symmetric way during mitosis. However, a small proportion of cell divisions results in asymmetric segregation of cellular components, which leads to differences in the characteristics of daughter cells. Although the classical function of asymmetric cell division (ACD) in the regulation of pluripotency is the generation of one differentiated daughter cell and one self-renewing stem cell, recent evidence suggests that ACD plays a role in other physiological processes. In cancer, tumor heterogeneity can result from the asymmetric segregation of genetic material and other cellular components, resulting in cell-to-cell differences in fitness and response to therapy. Defining the contribution of ACD in generating differences in key features relevant to cancer biology is crucial to advancing our understanding of the causes of tumor heterogeneity and developing strategies to mitigate or counteract it. In this Review, we delve into the occurrence of asymmetric mitosis in cancer cells and consider how ACD contributes to the variability of several phenotypes. By synthesizing the current literature, we explore the molecular mechanisms underlying ACD, the implications of phenotypic heterogeneity in cancer, and the complex interplay between these two phenomena.


Subject(s)
Asymmetric Cell Division , Neoplasms , Humans , Mitosis/genetics , Neoplasms/genetics , Stem Cells , Cell Differentiation
2.
J Cell Sci ; 136(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36594556

ABSTRACT

Cancer cells have heterogeneous fitness, and this heterogeneity stems from genetic and epigenetic sources. Here, we sought to assess the contribution of asymmetric mitosis (AM) and time on the variability of fitness in sister cells. Around one quarter of sisters had differences in fitness, assessed as the intermitotic time (IMT), from 330 to 510 min. Phenotypes related to fitness, such as ERK activity (herein referring to ERK1 and ERK2, also known as MAPK3 and MAPK1, respectively), DNA damage and nuclear morphological phenotypes were also asymmetric at mitosis or turned asymmetric over the course of the cell cycle. The ERK activity of mother cell was found to influence the ERK activity and the IMT of the daughter cells, and cells with ERK asymmetry at mitosis produced more offspring with AMs, suggesting heritability of the AM phenotype for ERK activity. Our findings demonstrate how variabilities in sister cells can be generated, contributing to the phenotype heterogeneities in tumor cells.


Subject(s)
Cell Nucleus Division , Mitosis , Mitosis/genetics , Cell Cycle , Phosphorylation , Stem Cells
3.
Biochem Soc Trans ; 50(1): 513-527, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35166330

ABSTRACT

Tracking individual cells has allowed a new understanding of cellular behavior in human health and disease by adding a dynamic component to the already complex heterogeneity of single cells. Technically, despite countless advances, numerous experimental variables can affect data collection and interpretation and need to be considered. In this review, we discuss the main technical aspects and biological findings in the analysis of the behavior of individual cells. We discuss the most relevant contributions provided by these approaches in clinically relevant human conditions like embryo development, stem cells biology, inflammation, cancer and microbiology, along with the cellular mechanisms and molecular pathways underlying these conditions. We also discuss the key technical aspects to be considered when planning and performing experiments involving the analysis of individual cells over long periods. Despite the challenges in automatic detection, features extraction and long-term tracking that need to be tackled, the potential impact of single-cell bioimaging is enormous in understanding the pathogenesis and development of new therapies in human pathophysiology.


Subject(s)
Stem Cells , Cell Differentiation , Humans
4.
Cancer Res ; 82(1): 3-11, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34785576

ABSTRACT

Heterogeneity is a pervasive feature of cancer, and understanding the sources and regulatory mechanisms underlying heterogeneity could provide key insights to help improve the diagnosis and treatment of cancer. In this review, we discuss the origin of heterogeneity in the phenotype of individual cancer cells. Genotype-phenotype (G-P) maps are widely used in evolutionary biology to represent the complex interactions of genes and the environment that lead to phenotypes that impact fitness. Here, we present the rationale of an extended G-P (eG-P) map with a cone structure in cancer. The eG-P cone is formed by cells that are similar at the genome layer but gradually increase variability in the epigenome, transcriptome, proteome, metabolome, and signalome layers to produce large variability at the phenome layer. Experimental evidence from single-cell-omics analyses supporting the cancer eG-P cone concept is presented, and the impact of epimutations and the interaction of cancer and tumor microenvironmental eG-P cones are integrated with the current understanding of cancer biology. The eG-P cone concept uncovers potential therapeutic strategies to reduce cancer evolution and improve cancer treatment. More methods to study phenotypes in single cells will be the key to better understand cancer cell fitness in tumor biology and therapeutics.


Subject(s)
Genomics/methods , Neoplasms/genetics , Humans , Phenotype
5.
Cancer Res ; 81(4): 1040-1051, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33355182

ABSTRACT

Several phenotypes that impact the capacity of cancer cells to survive and proliferate are dynamic. Here we used the number of cells in colonies as an assessment of fitness and devised a novel method called Dynamic Fitness Analysis (DynaFit) to measure the dynamics in fitness over the course of colony formation. DynaFit is based on the variance in growth rate of a population of founder cells compared with the variance in growth rate of colonies with different sizes. DynaFit revealed that cell fitness in cancer cell lines, primary cancer cells, and fibroblasts under unhindered growth conditions is dynamic. Key cellular mechanisms such as ERK signaling and cell-cycle synchronization differed significantly among cells in colonies after 2 to 4 generations and became indistinguishable from randomly sampled cells regarding these features. In the presence of cytotoxic agents, colonies reduced their variance in growth rate when compared with their founder cell, indicating a dynamic nature in the capacity to survive and proliferate in the presence of a drug. This finding was supported by measurable differences in DNA damage and induction of senescence among cells of colonies. The presence of epigenetic modulators during the formation of colonies stabilized their fitness for at least four generations. Collectively, these results support the understanding that cancer cell fitness is dynamic and its modulation is a fundamental aspect to be considered in comprehending cancer cell biology and its response to therapeutic interventions. SIGNIFICANCE: Cancer cell fitness is dynamic over the course of the formation of colonies. This dynamic behavior is mediated by asymmetric mitosis, ERK activity, cell-cycle duration, and DNA repair capacity in the absence or presence of a drug.


Subject(s)
Cell Proliferation/physiology , Genetic Fitness/physiology , Neoplasms/pathology , Cell Cycle/drug effects , Cell Cycle/physiology , Cell Proliferation/drug effects , Cells, Cultured , Clone Cells/pathology , Clone Cells/physiology , DNA Damage/drug effects , DNA Damage/physiology , Genetic Fitness/drug effects , Humans , MCF-7 Cells , Mitosis/drug effects , Mitosis/physiology , Temozolomide/pharmacology , Tumor Stem Cell Assay
6.
Chem Biol Interact ; 331: 109278, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33038329

ABSTRACT

Only in the last decade the long-term consequences of sepsis started to be studied and even less attention has been given to the treatment of psychological symptoms of sepsis survivors. It is estimated that 60% of sepsis survivors have psychological disturbances, including depression, anxiety, and cognitive impairment. Although the causative factors remain largely poorly understood, blood-brain barrier (BBB) disturbances, neuroinflammation, and oxidative stress have been investigated. Therefore, we sought to explore if the immunomodulatory and antioxidant selenocompound 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole (CMI) would be able to ameliorate long-term behavioral and biochemical alterations in sepsis survivors male Swiss mice. CMI treatment (1 mg/kg, given orally for seven consecutive days) attenuated depression- and anxiogenic-like behaviors and cognitive impairment present one month after the induction of sepsis (lipopolysaccharide, 5 mg/kg intraperitoneally). Meantime, CMI treatment modulated the number of neutrophils and levels of reactive species in neutrophils, lymphocytes, and monocytes. In addition, peripheral markers of liver and kidneys dysfunction (AST, ALT, urea, and creatinine) were reduced after CMI treatment in post-septic mice. Notably, CMI treatment to non-septic mice did not alter AST, ALT, urea, and creatinine levels, indicating the absence of acute hepatotoxicity and nephrotoxicity following CMI treatment. Noteworthy, CMI ameliorated BBB dysfunction induced by sepsis, modulating the expression of inflammation-associated genes (NFκB, IL-1ß, TNF-α, IDO, COX-2, iNOS, and BDNF) and markers of oxidative stress (reactive species, nitric oxide, and lipid peroxidation levels) in the prefrontal cortices and hippocampi of mice. In conclusion, we unraveled crucial molecular pathways that are impaired in post-septic mice and we present CMI as a promising therapeutic candidate aimed to manage the long-lasting behavioral alterations of sepsis survivors to improve their quality of life.


Subject(s)
Behavior, Animal , Indoles/chemistry , Oxidative Stress , Sepsis/pathology , Animals , Anxiety/drug therapy , Anxiety/etiology , Behavior, Animal/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Depression/drug therapy , Depression/etiology , Depression/pathology , Disease Models, Animal , Indoles/pharmacology , Indoles/therapeutic use , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Kidney/drug effects , Kidney/metabolism , Lipopolysaccharides/toxicity , Liver/drug effects , Liver/metabolism , Locomotion/drug effects , Male , Mice , Neutrophils/cytology , Neutrophils/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Sepsis/complications
7.
Brain Res Bull ; 161: 158-165, 2020 08.
Article in English | MEDLINE | ID: mdl-32470357

ABSTRACT

Major depressive disorder (MDD) is a chronic mental illness affecting a wide range of people worldwide. The pathophysiology of MDD is not completely elucidated, but it is believed that oxidative stress and neuroinflammation are involved. In light with this, the aim of the present study was to investigate whether a single administration of the antioxidant 1-methyl-3-(phenylselanyl)-1H-indole (MFSeI) was able to reverse the streptozotocin-induced depression-like behavior, oxidative stress, and neuroinflammation in mice. MFSeI (10 mg/kg) was administered intragastrically (i.g.) 24 h after the intracerebroventricular injection of STZ (0.2 mg/4 µL/per mouse). Thirty minutes after MFSeI administration, behavioral tests and neurochemical analyses were performed. Fluoxetine (10 mg/kg, i.g.) was used as a positive control. MFSeI and fluoxetine were able to reverse the STZ-induced depression-like behavior, as evidenced by decreased immobility time in the forced swimming test and increased grooming time in the splash test. Mechanistically, MFSeI reversed the increased levels of reactive species and lipid peroxidation in the prefrontal cortices and hippocampi of STZ-treated mice. Additionally, neuroinflammation (i.e. expression of NF-κB, IL-1ß, and TNF-α) and the reduced mRNA levels of BDNF in the and hippocampi of depressed mice were reversed by treatment with MFSeI. Fluoxetine did not improve the STZ-induced alterations at the levels of reactive species, NF-κB and BDNF in the prefrontal cortices neither the levels of TNF-α in both brain regions. Together, these data suggest that the MFSeI may be a promising compound with antidepressant-like action, reducing oxidative stress and modulating inflammatory pathways in the brain of depressed mice.


Subject(s)
Antidepressive Agents/administration & dosage , Antioxidants/administration & dosage , Depression/drug therapy , Inflammation Mediators/antagonists & inhibitors , Oxidative Stress/drug effects , Selenium Compounds/administration & dosage , Streptozocin/toxicity , Animals , Antidepressive Agents/chemistry , Antioxidants/chemistry , Brain/drug effects , Brain/metabolism , Depression/chemically induced , Depression/metabolism , Inflammation Mediators/metabolism , Injections, Intraventricular , Male , Mice , Oxidative Stress/physiology , Selenium Compounds/chemistry , Streptozocin/administration & dosage
8.
J Psychiatr Res ; 120: 91-102, 2020 01.
Article in English | MEDLINE | ID: mdl-31654972

ABSTRACT

Oxidative stress and neuroinflammation are found both in diabetes mellitus and major depressive disorder (MDD). In addition to damage in peripheral organs, such as liver and kidney, diabetic patients have a higher risk of developing depression. In this sense, the objective of the present study was to characterize the antidepressant-like effect of a selenium-containing compound, the 1-methyl-3-(phenylselanyl)-1H-indole (MFSeI), in streptozotocin (STZ)-induced diabetic mice. STZ (200 mg/kg, i.p.) was used to induce diabetes mellitus type I, and after seven days, the administration of MFSeI (10 mg/kg, i.g.) was initiated and followed for the next 14 days. Twenty-four hours after the last administration of MFSeI, the behavioral tests were performed, followed by euthanasia. The treatment with MFSeI was able to reverse the hyperglycemia induced by STZ. MFSeI also decreased the plasma levels of biomarkers of liver and kidney damage. Importantly, MFSeI reversed the depression-like behavior induced by STZ in the tail suspension test and forced swimming test without promoting locomotor alterations. Furthermore, MFSeI reversed the increased levels of reactive species and lipid peroxidation in the prefrontal cortex (PFC), hippocampus (HC), liver, and kidney of STZ-treated mice. Treatment with MFSeI also decreased the expression of tumor necrosis factor-alpha, inducible nitric oxide synthase and indoleamine 2,3-dioxygenase, while increasing the expression of interleukin-10, insulin receptor substrate-1 and glucose transport-4 in the PFC and HC of mice. Taken together, the results indicate the effectiveness of MFSeI against depression-like behavior and central and peripheral complications caused by diabetes in mice.


Subject(s)
Behavior, Animal/drug effects , Cerebral Cortex/drug effects , Depression/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Hyperglycemia/drug therapy , Indoles/pharmacology , Inflammation/drug therapy , Organoselenium Compounds/pharmacology , Animals , Depression/blood , Depression/immunology , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/immunology , Hippocampus/drug effects , Hyperglycemia/blood , Hyperglycemia/immunology , Indoles/administration & dosage , Inflammation/blood , Inflammation/immunology , Kidney/drug effects , Liver/drug effects , Mice , Organoselenium Compounds/administration & dosage , Selenium
9.
Sci Rep ; 9(1): 7276, 2019 05 13.
Article in English | MEDLINE | ID: mdl-31086208

ABSTRACT

Alzheimer's disease (AD) is a multifactorial pathology characterized by amyloid deposits, neurofibrillary formation, oxidative stress and cholinergic system dysfunction. In this sense, here we report the rational design of a multi-target directed ligand (MTDL) for AD based on virtual screening and bioinformatic analyses, exploring the molecular targets ß-secretase (BACE-1), glycogen synthase kinase-3ß (GSK-3ß) and acetylcholinesterase (AChE). After this screening, the compound with higher molecular docking affinity was selected, the 1-(7-chloroquinolin-4-yl)-N-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazole-4 carboxamide(QTC-4-MeOBnE). To further our studies, the protective effect of QTC-4-MeOBnE (0.1 and 1 mg/kg for 20 days) on STZ-induced sporadic AD mice was determined. QTC-4-MeOBnE pretreatment attenuated cognitive and memory deficit induced by STZ in an object recognition test, Y-maze, social recognition test and step-down passive avoidance. The mechanisms underlying this action might be attributed to the reduction of lipid peroxidation and reactive species formation in the prefrontal cortex and hippocampus of mice submitted to STZ. In addition, QTC-4-MeOBnE pretreatment abolished the up-regulation of AChE activity and the overexpression of GSK 3ß and genes involved in amyloid cascade such as BACE-1, protein precursor amyloid, у-secretase, induced by STZ. Moreover, toxicological parameters were not modified by QTC-4-MeOBnE chronic treatment. This evidence suggests that QTC-4-MeOBnE exerts its therapeutic effect through multiple pathways involved in AD.


Subject(s)
Alzheimer Disease/drug therapy , Cognition/drug effects , Neuroprotective Agents/therapeutic use , Quinolines/therapeutic use , Triazoles/therapeutic use , Alzheimer Disease/chemically induced , Alzheimer Disease/pathology , Animals , Disease Models, Animal , Male , Maze Learning/drug effects , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Mice , Molecular Docking Simulation , Streptozocin
10.
J Psychiatr Res ; 115: 1-12, 2019 08.
Article in English | MEDLINE | ID: mdl-31082651

ABSTRACT

Major depression and anxiety are highly incapacitating psychiatric disorders often present simultaneously, and the causal relationship between these disorders and inflammation are under extensive investigation. The treatment for this comorbidity still relies on drugs acting on the serotonergic neurotransmission, but the modulation of immune-inflammatory pathways has attained an increasing interest in the drug discovery. We have previously demonstrated that the selenoorganic compound 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole (CMI) possess antioxidant, anti-inflammatory, antinociceptive and antidepressant-like effect in mice. Considering these pharmacological properties and the structural similarities between tryptophan, serotonin and CMI, the aim of the present study was to investigate whether CMI ameliorates depression- and anxiogenic-like behavior induced by lipopolysaccharide (LPS) in Swiss male mice by modulating the serotonergic system and reducing neuroinflammation. The administration of CMI (1 mg/kg, i.g) reversed the behavioral deficits induced by LPS (0.83 mg/kg, i.p) in the tail suspension test, splash test and elevated plus maze. The pre-treatment of mice with WAY100635 (5-HT1A receptor antagonist), ketanserin (5-HT2A/2C receptor antagonist) and ondansetron (5-HT3 receptor antagonist) prevented the antidepressant- and anxiolytic-like effect elicited by CMI treatment after the LPS challenge. The administration of CMI also counteracted the increased expression of pro-inflammatory cytokines and indoleamine 2,3-dioxygenase (IDO) in the prefrontal cortex and hippocampus of mice challenged with LPS. Additionally, a molecular docking analysis showed that CMI binds to the active site of the serotonin transporter and IDO. These findings suggest that CMI reversed behavioral and biochemical alterations in the depression-anxiety comorbidity induced by LPS, possibly by modulation of neuroinflammatory mediators and the serotonergic system.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Anxiety/drug therapy , Behavior, Animal/drug effects , Depression/drug therapy , Hippocampus/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/drug effects , Indoles/pharmacology , Prefrontal Cortex/drug effects , Selenium Compounds/pharmacology , Serotonin Plasma Membrane Transport Proteins/drug effects , Animals , Anxiety/chemically induced , Anxiety/immunology , Depression/chemically induced , Depression/immunology , Disease Models, Animal , Lipopolysaccharides , Male , Mice , Molecular Docking Simulation
11.
Front Oncol ; 9: 203, 2019.
Article in English | MEDLINE | ID: mdl-31024833

ABSTRACT

Transitional cell carcinoma (TCC) represents the most frequent type of bladder cancer. Recently, studies have focused on molecular tumor classifications in order to diagnose tumor subtypes and predict future clinical behavior. Increased expression of HER1 and HER2 receptors in TTC is related to advanced stage tumors. Lapatinib is an important alternative to treat tumors that presents this phenotype due to its ability to inhibit tyrosine kinase residues associated with HER1 and HER2 receptors. This study evaluated the cytotoxicity induced by LAP-loaded nanocapsules (NC-LAP) compared to LAP in HER-positive bladder cancer cell. The cytotoxicity induced by NC-LAP was evaluated through flow cytometry, clonogenic assay and RT-PCR. NC-LAP at 5 µM reduced the cell viability and was able to induce G0/G1 cell cycle arrest with up-regulation of p21. Moreover, NC-LAP treatment presented significantly higher apoptotic rates than untreated cells and cells incubated with drug-unloaded nanocapsules (NC) and an increase in Bax/Bcl-2 ratio was observed in T24 cell line. Furthermore, clonogenic assay demonstrated that NC-LAP treatment eliminated almost all cells with clonogenic capacity. In conclusion, NC-LAP demonstrate antitumoral effect in HER-positive bladder cells by inducing cell cycle arrest and apoptosis exhibiting better effects compared to the non-encapsulated lapatinib. Our work suggests that the LAP loaded in nanoformulations could be a promising approach to treat tumors that presents EGFR overexpression phenotype.

12.
Front Neurosci ; 12: 486, 2018.
Article in English | MEDLINE | ID: mdl-30072867

ABSTRACT

Inasmuch, as the major depressive disorder (MDD) has been characterized as a heterogeneous disease as the inflammatory processes, neurotrophic factors' dysfunction and oxidative/nitrosative stress are believed to play a vital role in its establishment. Organoselenium compounds stand out due to their antioxidant, anti-inflammatory, neuroprotective, and antidepressant effects. In this sense, the present study investigated the effect of 3-((4-methoxyphenyl)selanyl)-2-phenylimidazo[1,2-a]pyridine (MPI; 20 and 50 mg/kg, intragastrically) pretreatment [30 min prior lipopolysaccharide (LPS) challenge (0.83 mg/kg)] on acute LPS induced depressive-like behavior, neuroinflammation, and oxidative stress. MPI was able to prevent the increased immobility time induced by LPS on the forced swimming test (FST), the increase in pro-inflammatory cytokines' expression in the hippocampus (HC) of mice after LPS challenge via NFkB downregulation, and the increase of the reactive oxygen species generation and lipid peroxidation in the prefrontal cortex and HC of mice. It was observed that at the doses tested, MPI protected against reducing levels of BDNF in the cortex and HC of mice challenged with LPS. These observations suggest that the antidepressant-like effect of MPI depends on its capacity to modulate the inflammatory, antioxidant, and neurotrophic systems.

13.
Vaccine ; 36(25): 3578-3583, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29759378

ABSTRACT

The aim of this study was to evaluate the survival of mice inoculated with M. bovis BCG Pasteur recombinant expressing the PLD protein and challenged with a C. pseudotuberculosis virulent strain. Four groups were immunized with a sterile 0.9% saline solution (G1), 106 CFU of M. bovis BCG Pasteur (G2), 106 CFU of M. bovis BCG/pld (G3) or 106 CFU of M. bovis BCG/pld with a booster with rPLD (G4) and challenged with 104 CFU of C. pseudotuberculosis MIC-6 strain. The highest survival rate of 88% was observed in G4, followed by 77% in G3 and 66% in G2. A significant statistical difference was observed in the levels of cytokines IFN-γ and IL-10 in vaccinated groups (G3 and G4) when compared with the control group (G1) (p < 0.05). The results seem promising as the recombinant vaccine elicited a cellular immune response and provided significant survival after a high virulent challenge.


Subject(s)
BCG Vaccine/genetics , Bacterial Proteins/immunology , Corynebacterium Infections/prevention & control , Phospholipase D/immunology , Vaccination/methods , Animals , BCG Vaccine/administration & dosage , BCG Vaccine/immunology , Bacterial Proteins/genetics , Cloning, Molecular , Corynebacterium Infections/immunology , Corynebacterium Infections/microbiology , Corynebacterium Infections/mortality , Corynebacterium pseudotuberculosis/immunology , Corynebacterium pseudotuberculosis/pathogenicity , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Engineering , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Immunization, Secondary , Mice , Mice, Inbred BALB C , Mycobacterium bovis/genetics , Mycobacterium bovis/immunology , Phospholipase D/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Survival Analysis
14.
PLoS One ; 13(2): e0191797, 2018.
Article in English | MEDLINE | ID: mdl-29390009

ABSTRACT

Most studies of Brazilian red propolis have explored the composition and biological properties of its ethanolic extracts. In this work, we chemically extracted and characterized the essential oil of Brazilian red propolis (EOP) and assessed its adjuvant, antiparasitic and cytotoxic activities. The chemical composition of EOP was analyzed using gas chromatography with mass spectrometry (GC-MS). EOP was tested for in vitro activity against Trichomonas vaginalis (ATCC 30236 isolate); trophozoites were treated with different concentrations of EOP (ranging from 25 to 500 µg/mL) in order to establish the MIC and IC50 values. A cytotoxicity assay was performed in CHO-K1 cells submitted to different EOP concentrations. BALB/c mice were used to test the adjuvant effect of EOP. The animals were divided in 3 groups and inoculated as follows: 0.4 ng/kg BW EOP (G1); 50 µg of rCP40 protein (G2); or a combination of 0.4 ng/kg BW EOP and 50 µg of rCP40 (G3). Total IgG, IgG1 and IgG2a levels were assessed by ELISA. The major constituent compounds of EOP were methyl eugenol (13.1%), (E)-ß-farnesene (2.50%), and δ-amorphene (2.3%). Exposure to EOP inhibited the growth of T. vaginalis, with an IC50 value of 100 µg/mL of EOP. An EOP concentration of 500 µg/mL was able to kill 100% of the T. vaginalis trophozoites. The EOP kinetic growth curve showed a 36% decrease in trophozoite growth after a 12 h exposure to 500 µg/mL of EOP, while complete parasite death was induced at 24 h. With regard to CHO-K1 cells, the CC50 was 266 µg/mL, and 92% cytotoxicity was observed after exposure to 500 µg/mL of EOP. Otherwise, a concentration of 200 µg/mL of EOP was able to reduce parasite proliferation by 70% and was not cytotoxic to CHO-K1 cells. As an adjuvant, a synergistic effect was observed when EOP was combined with the rCP40 protein (G3) in comparison to the administration of each component alone (G1 and G2), resulting in higher concentrations of IgG, IgG1 and IgG2a. EOP is constituted by biologically active components with promising antiparasitic and immunostimulatory activities and can be investigated for the formulation of new vaccines or trichomonacidal drugs.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antiparasitic Agents/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Propolis/chemistry , Animals , Antibody Formation , CHO Cells , Cell Survival/drug effects , Cricetinae , Cricetulus , Female , Gas Chromatography-Mass Spectrometry , Mice, Inbred BALB C , Trichomonas vaginalis/drug effects
15.
Biomed Pharmacother ; 98: 390-398, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29276967

ABSTRACT

BACKGROUND: Breast cancer is a global public health problem. For some subtypes, such as Claudin-low, the prognosis is poorer and the treatment is still a challenge. Pyrazoles are an important class of heterocyclic compounds and are promising anticancer agents based on their chemical properties. The present study was aimed not only at testing pyrazoles previously prepared by our research group in two breast cancer cell lines characterized by intermediated response to conventional chemotherapy but also at analyzing the possible synergistic effect of these pyrazoles associated with doxorubicin. METHODS: Four 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H pyrazoles were tested for the first time in MCF-7 and MDA-MB-231 culture cells. The pyrazoles with best results in cytotoxicity were used in combination with doxorubicin and compared with this drug alone as standard. The synergic effect was analyzed using Combination Index method. In addition, cell death and apoptosis assays were carried out. RESULTS: Two pyrazoles with cytotoxic effect in MCF-7 and especially in MDA-MB-231 were identified. This activity was markedly higher in pyrazoles containing bromine and chlorine substituents. The combination of these pyrazoles with doxorubicin had a significant synergic effect in both cells tested and mainly in MDA-MB-231. These data were confirmed with apoptosis and cell death analysis. CONCLUSIONS: The synergic effect observed with combination of these pyrazoles and doxorubicin deserves special attention in Claudin-low breast cancer subtype. This should be explored in order to improve treatment results and minimize side effects.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Claudins/metabolism , Doxorubicin/pharmacology , Pyrazoles/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Drug Synergism , Female , Humans , MCF-7 Cells
16.
Vaccine ; 36(1): 74-83, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29174312

ABSTRACT

Caseous lymphadenitis (CLA) is a chronic disease responsible for significant economic losses in sheep and goat breeding worldwide. The treatment for this disease is not effective, and an intense vaccination schedule would be the best control strategy. In this study, we evaluated the associations of rCP09720 or rCP01850 proteins from Corynebacterium pseudotuberculosis with recombinant exotoxin phospholipase D (rPLD) as subunit vaccines in mice. Four experimental groups (10 animals each) were immunized with a sterile 0.9% saline solution (G1), rPLD (G2), rPLD + rCP09720 (G3), and rPLD + rCP01850 (G4). The mice received two doses of each vaccine at a 21-day interval and were challenged 21 days after the last immunization. The animals were evaluated daily for 40 days after the challenge, and mortality rate was recorded. The total IgG production level increased significantly in the experimental groups on day 42 after the first vaccination. Similarly, higher levels of specific IgG2a were observed in experimental groups G2, G3, and G4 compared to the IgG1 levels on day 42. G4 showed a significant (p < .05) humoral response against both antigens of the antigenic formulations. The cellular immune response induced by immunization was characterized by a significant (p < .05) production of interferon-γ compared to that in the control, while the concentrations of interleukin (IL)-4 and IL-12 were not significant in any group. A significant increase of tumor necrosis factor was observed only in G4. The survival rates after the challenge were 30% (rPLD), 40% (rPLD + rCP09720), and 50% (rPLD + rCP01850). Thus, the association of rCP01850 with rPLD resulted in the best protection against the challenge with C. pseudotuberculosis and induced a more intense type 1 T-helper cell immune response.


Subject(s)
Bacterial Vaccines/immunology , Corynebacterium Infections/prevention & control , Corynebacterium pseudotuberculosis/immunology , Lymphadenitis/veterinary , Phospholipase D/immunology , Recombinant Proteins/immunology , Acid Phosphatase/administration & dosage , Acid Phosphatase/genetics , Acid Phosphatase/immunology , Animals , Antibodies, Bacterial/blood , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/genetics , Corynebacterium Infections/immunology , Corynebacterium Infections/microbiology , Corynebacterium pseudotuberculosis/chemistry , Corynebacterium pseudotuberculosis/enzymology , Corynebacterium pseudotuberculosis/genetics , Esterases/administration & dosage , Esterases/genetics , Esterases/immunology , Goats/microbiology , Immunity, Cellular , Immunoglobulin G/blood , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Lymphadenitis/immunology , Lymphadenitis/microbiology , Lymphadenitis/prevention & control , Mice , Phospholipase D/administration & dosage , Phospholipase D/genetics , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Sheep/microbiology , Sheep Diseases/immunology , Sheep Diseases/microbiology , Sheep Diseases/prevention & control , Th1 Cells/immunology , Vaccination/veterinary , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
17.
Biomed Pharmacother ; 96: 404-409, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29031198

ABSTRACT

Nanostructured drug delivery systems have been extensively studied, mainly for applications in cancer therapy. The advantages of these materials include protection against drug degradation and improvement in both the relative solubility of poorly water soluble drugs as in targeting of therapy, due to the enhanced permeability and retention effect on tumor sites. In this work, we evaluate the antitumor activity of tretinoin-loaded lipid core nanocapsules (TT-LNC) in a tretinoin-resistant breast cancer cell-line, MDA-MB- 231, as well as the synergistic effect of combination of this treatment with 5-FU or DOXO. The inhibition of cell growth was assayed by MTT reduction. Live/Dead assay and DAPI staining evaluated cytotoxicity. Apoptosis was evaluated by Annexin V-PE/7AAD and the effect of chronic exposure was evaluated by colony formation assay. TT-LNC reduced the cell viability even at lower concentrations (1µM) and displayed synergistic effect with 5-FU or DOXO on cytotoxicity and colony formation inhibition. Our work shows a possibility of using nanocapsules to improve the antitumoral activity of TT for its use either alone or in combination with other chemotherapeutic drugs, especially considering the chronic effect.


Subject(s)
Doxorubicin/administration & dosage , Drug Resistance, Neoplasm/drug effects , Fluorouracil/administration & dosage , Nanocapsules/administration & dosage , Tretinoin/administration & dosage , Triple Negative Breast Neoplasms , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Drug Carriers/administration & dosage , Drug Resistance, Neoplasm/physiology , Drug Synergism , Humans , Lipids/administration & dosage , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology
18.
Biomed Pharmacother ; 94: 37-46, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28750358

ABSTRACT

Bladder cancer is a genitourinary malignant disease common worldwide. Current chemotherapy is often limited mainly due to toxicity and drug resistance. Thus, there is a continued need to discover new therapies. Recently evidences shows that pyrazoline derivatives are promising antitumor agents in many types of cancers, but there are no studies with bladder cancer. In order to find potent and novel chemotherapy drugs for bladder cancer, a series of pyrazoline derivatives 2a-2d were tested for their antitumor activity in two human bladder cancer cell lines 5647 and T24. The MTT assay showed that the compounds 1-thiocarbamoyl-3,5-diphenyl-4,5-dihydro-1H-pyrazole (2a) and 1-thiocarbamoyl-5-(4-chlorophenyl)-3-phenyl-4,5-dihydro-1H-pyrazole (2c) decrease the cell viability of 5637 cells. Molecular modeling indicated that these compounds had a good oral bioavailability and low toxicities. Clonogenic assay and flow cytometric analysis were used to assess colony formation, apoptosis induction and cell cycle distribution. Overall, our results suggest that pyrazoline 2a and 2c, with the substituents hydrogen and chlorine respectively, may decrease cell viability and colony formation of bladder cancer 5637 cell line by inhibition of cell cycle progression, and for pyrazoline 2a, by induction of apoptosis. As indicated by the physicochemical properties of these compounds, the steric factor influences the activity. Therefore, these pyrazoline derivatives can be considered promising anticancer agents for the treatment of bladder cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Pyrazoles/pharmacology , Urinary Bladder Neoplasms/pathology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Models, Molecular , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/toxicity , Tumor Stem Cell Assay
19.
J Psychopharmacol ; 31(9): 1263-1273, 2017 09.
Article in English | MEDLINE | ID: mdl-28661258

ABSTRACT

Organoselenium compounds and indoles have gained attention due to their wide range of pharmacological properties. Depression is a recurrent and disabling psychiatric illness and current evidences support that oxidative stress and neuroinflammation are mechanisms underlying the pathophysiology of this psychiatric condition. Here, we evaluated the effect of 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole (CMI) in lipopolysaccharide (LPS)-induced depressive-like behaviour, neuroinflammation and oxidative stress in male mice. CMI pre-treatment (20 and 50 mg/kg, intragastrically) significantly attenuated LPS (0.83 mg/kg, intraperitoneally)-induced depressive-like behaviour in mice by reducing the immobility time in the tail suspension test (TST) and forced swimming test (FST). CMI pre-treatment ameliorated LPS-induced neuroinflammation by reducing the levels of interleukin (IL)-1ß, IL-4 and IL-6 in the hippocampus and prefrontal cortex, as well as markers of oxidative damage. Additionally, we investigated the toxicological effects of CMI (200 mg/kg, i.g.) in the liver, kidney and brain through determination of the activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT), δ-aminolevulinate dehydratase (δ-ALA-D) and creatinine levels. These biomarkers were not modified, indicating the possible absence of neuro-, hepato- and nephrotoxic effects. Our results suggest that CMI could be a therapeutic approach for the treatment of depression and other neuropsychiatric disorders associated with inflammation and oxidative stress.


Subject(s)
Antidepressive Agents/pharmacology , Inflammation/drug therapy , Lipopolysaccharides/pharmacology , Oxidative Stress/drug effects , Selenium/pharmacology , Animals , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/metabolism , Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , Interleukin-4/metabolism , Interleukin-6/metabolism , Male , Mice , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Swimming , Tumor Necrosis Factor-alpha/metabolism
20.
Biomed Pharmacother ; 91: 510-516, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28482288

ABSTRACT

Breast cancer is a major public health burden in both developed and developing countries and there is still a need to screen new molecules with different modes of actions. The aims of this study were to evaluate the selectivity profile, apoptotic cell death and cell cycle arrest induced by 7-chloroquinoline-1,2,3-triazoyl carboxamides derivatives in hormonal-dependent and hormonal-independent breast cancer cells. Results showed significantly decreased MCF-7 and MDA-MB-231 cells viability in vitro in a dose dependent manner after treatment with 7-chloroquinoline derivatives QTCA-1, QTCA-2 and QTCA-3. QTCA-1 displayed the highest cytotoxic activity from all the tested compounds in MDA-MB-231 with IC50 values of 20.60, 20.42 and 19.91µM in 24, 48 and 72h of treatment respectively. Apoptosis induction was also significantly higher in the hormonal-independent breast cancer cells, with 80.4% of dead cells in MDA-MB-231 and only 16.8% of dead in MCF-7 cells. As a result, G0/G1 cycle arrest was observed in MCF-7 cells and no cell cycle arrest at all was observed in MDA-MB-231 cells. Molecular docking showed a high affinity of QTCA-1 to PARP-1, Scr and PI3K/mTOR targets. These results suggest a strong activity of the 7-chloroquinoline derivative QTCA-1 in independent-hormonal cells and suggest selectivity for triple negative cells.


Subject(s)
Apoptosis/drug effects , Triazoles/pharmacology , Triple Negative Breast Neoplasms/pathology , Female , Humans , MCF-7 Cells , Molecular Docking Simulation , Triazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...