Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Gen Comp Endocrinol ; 267: 76-81, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29902473

ABSTRACT

Stress enhances or inhibits neurogenesis in mammals and some fish species. The link between the two processes is still unclear. Most studies have been performed in very specific stressful or altered environments. Despite the known inter-individual divergence in coping abilities within populations, the relationship between the stress axis and neurogenesis has never been addressed in unstressed individuals. Here we correlate brain expression of the pcna (proliferating cell nuclear antigen) and neurod1 (neurogenic differentiation factor 1) genes, two markers of neurogenesis, with transcripts of cortisol receptors in three fish species living in very distinct environments. Within the three species, individuals with the highest expression of neurogenesis genes were also those that expressed the high levels of cortisol receptors. Based on these correlations and the hypothesis that mRNA levels are proxies of protein levels, we hypothesize that within unstressed animals, individuals sensitive to cortisol perceive a similar environment to be more stimulating, leading to increased neurogenesis. Although it is difficult to determine whether it is sensitivity to cortisol that affects neurogenesis capacities or the opposite, the proposed pathway is a potentially fruitful avenue that warrants further mechanistic experiments.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Receptors, Glucocorticoid/metabolism , Animals , Cell Differentiation , Cell Proliferation , Fishes
2.
Environ Sci Eur ; 30(1): 46, 2018.
Article in English | MEDLINE | ID: mdl-30595996

ABSTRACT

The numbers of potential neurotoxicants in the environment are raising and pose a great risk for humans and the environment. Currently neurotoxicity assessment is mostly performed to predict and prevent harm to human populations. Despite all the efforts invested in the last years in developing novel in vitro or in silico test systems, in vivo tests with rodents are still the only accepted test for neurotoxicity risk assessment in Europe. Despite an increasing number of reports of species showing altered behaviour, neurotoxicity assessment for species in the environment is not required and therefore mostly not performed. Considering the increasing numbers of environmental contaminants with potential neurotoxic potential, eco-neurotoxicity should be also considered in risk assessment. In order to do so novel test systems are needed that can cope with species differences within ecosystems. In the field, online-biomonitoring systems using behavioural information could be used to detect neurotoxic effects and effect-directed analyses could be applied to identify the neurotoxicants causing the effect. Additionally, toxic pressure calculations in combination with mixture modelling could use environmental chemical monitoring data to predict adverse effects and prioritize pollutants for laboratory testing. Cheminformatics based on computational toxicological data from in vitro and in vivo studies could help to identify potential neurotoxicants. An array of in vitro assays covering different modes of action could be applied to screen compounds for neurotoxicity. The selection of in vitro assays could be guided by AOPs relevant for eco-neurotoxicity. In order to be able to perform risk assessment for eco-neurotoxicity, methods need to focus on the most sensitive species in an ecosystem. A test battery using species from different trophic levels might be the best approach. To implement eco-neurotoxicity assessment into European risk assessment, cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants. In a second step, a small species test battery could be applied to assess the risks of ecosystems.

4.
Fish Physiol Biochem ; 38(1): 243-57, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22278705

ABSTRACT

The objective was to take a first step in the development of a process-oriented quality assurance (QA) system for monitoring and safeguarding of fish welfare at a company level. A process-oriented approach is focused on preventing hazards and involves establishment of critical steps in a process that requires careful control. The seven principles of the Hazard Analysis Critical Control Points (HACCP) concept were used as a framework to establish the QA system. HACCP is an internationally agreed approach for management of food safety, which was adapted for the purpose of safeguarding and monitoring the welfare of farmed fish. As the main focus of this QA system is farmed fish welfare assurance at a company level, it was named Fish Welfare Assurance System (FWAS). In this paper we present the initial steps of setting up FWAS for on growing of sea bass (Dicentrarchus labrax), carp (Cyprinus carpio) and European eel (Anguilla anguilla). Four major hazards were selected, which were fish species dependent. Critical Control Points (CCPs) that need to be controlled to minimize or avoid the four hazards are presented. For FWAS, monitoring of CCPs at a farm level is essential. For monitoring purposes, Operational Welfare Indicators (OWIs) are needed to establish whether critical biotic, abiotic, managerial and environmental factors are controlled. For the OWIs we present critical limits/target values. A critical limit is the maximum or minimum value to which a factor must be controlled at a critical control point to prevent, eliminate or reduce a hazard to an acceptable level. For managerial factors target levels are more appropriate than critical limits. Regarding the international trade of farmed fish products, we propose that FWAS needs to be standardized in aquaculture chains. For this standardization a consensus on the concept of fish welfare, methods to assess welfare objectively and knowledge on the needs of farmed fish are required.


Subject(s)
Animal Welfare , Fisheries/methods , Fishes/physiology , Animal Welfare/standards , Animals , Fisheries/standards , Risk Assessment
5.
J Fish Biol ; 75(7): 1733-49, 2009 Nov.
Article in English | MEDLINE | ID: mdl-20738645

ABSTRACT

Differences in bold and shy personality on sea bass Dicentrarchus labrax were investigated between a population (wild) produced from wild-brood fish and a population (selected) produced from selected-brood fish. During the experiment (112 days), fish were reared under self-feeding condition to characterize the feeding behaviour of each individual fish. Three risk-taking tests (T1, T2 and T3 of 24 h with day-night alternation) were carried out at >1 month intervals on 180 fish of each strain in order to monitor D. labrax behaviour over time and in relation to the light:dark period. A risk-taking score was evaluated via a preference choice between a safe zone (without food) and a risky zone (potentially with food) by recording the number and the duration of individual passages through an opening in an opaque divider. Results showed that fish performed passages preferentially during the night period and that wild fish were generally bolder than selected fish during T1 and T2 but showed a decrease in risk taking during T3, contrary to selected fish which showed a constant increase in their risk-taking behaviour. The phenotypic characteristics of the bold fish were different in the two strains: wild bold fish were the smallest within the wild strain and selected bold fish presented the higher growth rate within the selected strain. For both strains, these bold fish were also generally characterized by a high feed-demand activity. Fish hunger state thus seemed to be the highest motivation for risk-taking behaviour under the present conditions. Furthermore, behavioural variations over tests such as higher risk taking (number of passages) and faster exploratory responses (higher score emergence) could be interpreted as relevant indicators of the learning process and habituation. According to the results, however, no real difference in coping strategy between strains could be observed at this first stage of domestication and selection.


Subject(s)
Bass/physiology , Breeding , Feeding Behavior/physiology , Phenotype , Photoperiod , Animals , Risk-Taking , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...