Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
2.
Emerg Infect Dis ; 30(6): 1077-1087, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781681

ABSTRACT

Scedosporium spp. and Lomentospora prolificans are emerging non-Aspergillus filamentous fungi. The Scedosporiosis/lomentosporiosis Observational Study we previously conducted reported frequent fungal vascular involvement, including aortitis and peripheral arteritis. For this article, we reviewed 7 cases of Scedosporium spp. and L. prolificans arteritis from the Scedosporiosis/lomentosporiosis Observational Study and 13 cases from published literature. Underlying immunosuppression was reported in 70% (14/20) of case-patients, mainly those who had solid organ transplants (10/14). Osteoarticular localization of infection was observed in 50% (10/20) of cases; infections were frequently (7/10) contiguous with vascular infection sites. Scedosporium spp./Lomentospora prolificans infections were diagnosed in 9 of 20 patients ≈3 months after completing treatment for nonvascular scedosporiosis/lomentosporiosis. Aneurysms were found in 8/11 aortitis and 6/10 peripheral arteritis cases. Invasive fungal disease--related deaths were high (12/18 [67%]). The vascular tropism of Scedosporium spp. and L. prolificans indicates vascular imaging, such as computed tomography angiography, is needed to manage infections, especially for osteoarticular locations.


Subject(s)
Mycoses , Scedosporium , Humans , Scedosporium/isolation & purification , France/epidemiology , Male , Middle Aged , Aged , Female , Mycoses/microbiology , Mycoses/epidemiology , Mycoses/diagnosis , Adult , Antifungal Agents/therapeutic use , Aged, 80 and over , Invasive Fungal Infections
4.
Biomed Pharmacother ; 174: 116552, 2024 May.
Article in English | MEDLINE | ID: mdl-38599061

ABSTRACT

AIMS: Pulmonary hypertension (PH) is characterised by an increase in pulmonary arterial pressure, ultimately leading to right ventricular failure and death. We have previously shown that nerve growth factor (NGF) plays a critical role in PH. Our objectives here were to determine whether NGF controls Connexin-43 (Cx43) expression and function in the pulmonary arterial smooth muscle, and whether this mechanism contributes to NGF-induced pulmonary artery hyperreactivity. METHODS AND RESULTS: NGF activates its TrkA receptor to increase Cx43 expression, phosphorylation, and localization at the plasma membrane in human pulmonary arterial smooth muscle cells, thus leading to enhanced activity of Cx43-dependent GAP junctions as shown by Lucifer Yellow dye assay transfer and fluorescence recovery after photobleaching -FRAP- experiments. Using both in vitro pharmacological and in vivo SiRNA approaches, we demonstrate that NGF-dependent increase in Cx43 expression and activity in the rat pulmonary circulation causes pulmonary artery hyperreactivity. We also show that, in a rat model of PH induced by chronic hypoxia, in vivo blockade of NGF or of its TrkA receptor significantly reduces Cx43 increased pulmonary arterial expression induced by chronic hypoxia and displays preventive effects on pulmonary arterial pressure increase and right heart hypertrophy. CONCLUSIONS: Modulation of Cx43 by NGF in pulmonary arterial smooth muscle cells contributes to NGF-induced alterations of pulmonary artery reactivity. Since NGF and its TrkA receptor play a role in vivo in Cx43 increased expression in PH induced by chronic hypoxia, these NGF/Cx43-dependent mechanisms may therefore play a significant role in human PH pathophysiology.


Subject(s)
Connexin 43 , Myocytes, Smooth Muscle , Nerve Growth Factor , Pulmonary Artery , Animals , Humans , Male , Rats , Cells, Cultured , Connexin 43/metabolism , Gap Junctions/metabolism , Gap Junctions/drug effects , Hypertension, Pulmonary/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Nerve Growth Factor/metabolism , Phosphorylation , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Rats, Wistar , Receptor, trkA/metabolism
6.
Cell ; 187(2): 390-408.e23, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38157855

ABSTRACT

We describe a human lung disease caused by autosomal recessive, complete deficiency of the monocyte chemokine receptor C-C motif chemokine receptor 2 (CCR2). Nine children from five independent kindreds have pulmonary alveolar proteinosis (PAP), progressive polycystic lung disease, and recurrent infections, including bacillus Calmette Guérin (BCG) disease. The CCR2 variants are homozygous in six patients and compound heterozygous in three, and all are loss-of-expression and loss-of-function. They abolish CCR2-agonist chemokine C-C motif ligand 2 (CCL-2)-stimulated Ca2+ signaling in and migration of monocytic cells. All patients have high blood CCL-2 levels, providing a diagnostic test for screening children with unexplained lung or mycobacterial disease. Blood myeloid and lymphoid subsets and interferon (IFN)-γ- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated immunity are unaffected. CCR2-deficient monocytes and alveolar macrophage-like cells have normal gene expression profiles and functions. By contrast, alveolar macrophage counts are about half. Human complete CCR2 deficiency is a genetic etiology of PAP, polycystic lung disease, and recurrent infections caused by impaired CCL2-dependent monocyte migration to the lungs and infected tissues.


Subject(s)
Pulmonary Alveolar Proteinosis , Receptors, CCR2 , Child , Humans , Lung/metabolism , Macrophages, Alveolar/metabolism , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/diagnosis , Receptors, CCR2/deficiency , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Reinfection/metabolism
7.
Expert Rev Mol Diagn ; 23(12): 1283-1291, 2023.
Article in English | MEDLINE | ID: mdl-37906110

ABSTRACT

BACKGROUND: ALK, ROS1 and RET rearrangements occur, respectively, in 5%, 2%, and 1% non-small cell lung cancers (NSCLC). ALK and ROS1 fusion proteins detection by immunohistochemistry (IHC) has been validated for rapid patient screening, but ROS1 fusions need to be confirmed by another technique and no RET IHC test is available for clinical use. RESEARCH DESIGN AND METHODS: We report herein the usefulness of the HTG EdgeSeq Assay, an RNA extraction-free test combining a quantitative nuclease protection assay with NGS, for the detection of ALK, ROS1 and RET fusions from 'real-life' small NSCLC samples. A total of 203 FFPE samples were collected from 11 centers. They included 143 rearranged NSCLC (87 ALK, 39 ROS1, 17 RET) and 60 ALK-ROS1-RET negative controls. RESULTS: The assay had a specificity of 98% and a sensitivity for ALK, ROS1 and RET fusions of 80%, 94% and 100% respectively. Among the 19 HTG-assay false negative samples, the preanalytical conditions were identified as the major factors impacting the assay efficiency. CONCLUSIONS: Overall, the HTG EdgeSeq assay offers comparable sensitivities and specificity than other RNA sequencing techniques, with the advantage that it can be used on very small and old samples collected multicentrically.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Paraffin Embedding , Humans , Anaplastic Lymphoma Kinase/analysis , Carcinoma, Non-Small-Cell Lung/diagnosis , Lung Neoplasms/diagnosis , Lung Neoplasms/metabolism , Oncogene Proteins, Fusion/analysis , Protein-Tyrosine Kinases/analysis , Proto-Oncogene Proteins/analysis , Proto-Oncogene Proteins c-ret/analysis , Proto-Oncogene Proteins c-ret/metabolism , RNA , Immunochemistry/methods
8.
Elife ; 122023 07 26.
Article in English | MEDLINE | ID: mdl-37494277

ABSTRACT

Bronchi of chronic obstructive pulmonary disease (COPD) are the site of extensive cell infiltration, allowing persistent contact between resident cells and immune cells. Tissue fibrocytes interaction with CD8+ T cells and its consequences were investigated using a combination of in situ, in vitro experiments and mathematical modeling. We show that fibrocytes and CD8+ T cells are found in the vicinity of distal airways and that potential interactions are more frequent in tissues from COPD patients compared to those of control subjects. Increased proximity and clusterization between CD8+ T cells and fibrocytes are associated with altered lung function. Tissular CD8+ T cells from COPD patients promote fibrocyte chemotaxis via the CXCL8-CXCR1/2 axis. Live imaging shows that CD8+ T cells establish short-term interactions with fibrocytes, that trigger CD8+ T cell proliferation in a CD54- and CD86-dependent manner, pro-inflammatory cytokines production, CD8+ T cell cytotoxic activity against bronchial epithelial cells and fibrocyte immunomodulatory properties. We defined a computational model describing these intercellular interactions and calibrated the parameters based on our experimental measurements. We show the model's ability to reproduce histological ex vivo characteristics, and observe an important contribution of fibrocyte-mediated CD8+ T cell proliferation in COPD development. Using the model to test therapeutic scenarios, we predict a recovery time of several years, and the failure of targeting chemotaxis or interacting processes. Altogether, our study reveals that local interactions between fibrocytes and CD8+ T cells could jeopardize the balance between protective immunity and chronic inflammation in the bronchi of COPD patients.


Subject(s)
CD8-Positive T-Lymphocytes , Pulmonary Disease, Chronic Obstructive , Humans , Bronchi/pathology , Epithelial Cells/pathology , Inflammation/pathology
9.
Lab Invest ; 103(5): 100063, 2023 05.
Article in English | MEDLINE | ID: mdl-36801637

ABSTRACT

Mature tertiary lymphoid structures (mTLSs) are organized lymphoid structures containing B lymphocytes admixed to CD23+ follicular dendritic cells. Their presence has been linked to improved survival and sensitivity to immune checkpoint inhibitors in several cancers, emerging as a promising pancancer biomarker. However, the requirements for any biomarker are clear methodology, proven feasibility, and reliability. In 357 patients' samples, we studied tertiary lymphoid structures (TLSs) parameters using multiplex immunofluorescence (mIF), hematoxylin-eosin-saffron (HES) staining, double CD20/CD23 staining, and single CD23 immunohistochemistry. The cohort included carcinomas (n = 211) and sarcomas (n = 146), gathering biopsies (n = 170), and surgical specimens (n = 187). mTLSs were defined as TLSs containing either a visible germinal center on HES staining or CD23+ follicular dendritic cells. Focusing on 40 TLSs assessed using mIF, double CD20/CD23 staining was less sensitive than mIF to assess maturity in 27.5% (n = 11/40) but was rescued by single CD23 staining in 90.9% (n = 10/11). In 97 patients, several samples (n = 240) were reviewed to characterize TLS distribution. The likelihood of finding TLSs in surgical material was 6.1 higher than in biopsy and 2.0 higher in primary samples than in metastasis after adjustment with a type of sample. Interrater agreement rates over 4 examiners were 0.65 (Fleiss kappa, 95% CI [0.46, 0.90]) for the presence of TLS and 0.90 for maturity (95% CI [0.83, 0.99]). In this study, we propose a standardized method to screen mTLSs in cancer samples using HES staining and immunohistochemistry that can be applied to all specimens.


Subject(s)
Neoplasms , Tertiary Lymphoid Structures , Humans , Tertiary Lymphoid Structures/pathology , Prognosis , Reproducibility of Results , Early Detection of Cancer , Neoplasms/pathology , Biomarkers , Tumor Microenvironment
10.
JTO Clin Res Rep ; 4(2): 100457, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36718140

ABSTRACT

Introduction: Gene fusion testing of ALK, ROS1, RET, NTRK, and MET exon 14 skipping mutations is guideline recommended in nonsquamous NSCLC (NS-NSCLC). Nevertheless, assessment is often hindered by the limited availability of tissue and prolonged next-generation sequencing (NGS) testing, which can protract the initiation of a targeted therapy. Therefore, the development of faster gene fusion assessment is critical for optimal clinical decision-making. Here, we compared two ultrafast gene fusion assays (UFGFAs) using NGS (Genexus, Oncomine Precision Assay, Thermo Fisher Scientific) and a multiplex reverse-transcriptase polymerase chain reaction (Idylla, GeneFusion Assay, Biocartis) approach at diagnosis in a retrospective series of 195 NS-NSCLC cases and five extrapulmonary tumors with a known NTRK fusion. Methods: A total of 195 NS-NSCLC cases (113 known gene fusions and 82 wild-type tumors) were included retrospectively. To validate the detection of a NTRK fusion, we added five NTRK-positive extrathoracic tumors. The diagnostic performance of the two UFGFAs and standard procedures was compared. Results: The accuracy was 92.3% and 93.1% for Idylla and Genexus, respectively. Both systems improved the sensitivity for detection by including a 5'-3' imbalance analysis. Although detection of ROS1, MET exon 14 skipping, and RET was excellent with both systems, ALK fusion detection was reduced with sensitivities of 87% and 88%, respectively. Idylla had a limited sensitivity of 67% for NTRK fusions, in which only an imbalance assessment was used. Conclusions: UFGFA using NGS and reverse-transcriptase polymerase chain reaction approaches had an equal level of detection of gene fusion but with some technique-specific limitations. Nevertheless, UFGFA detection in routine clinical care is feasible with both systems allowing faster initiation of therapy and a broad degree of screening.

11.
Am J Respir Crit Care Med ; 207(4): 416-426, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36108144

ABSTRACT

Rationale: Children with preschool wheezing represent a very heterogeneous population with wide variability regarding their clinical, inflammatory, obstructive, and/or remodeling patterns. We hypothesized that assessing bronchial remodeling would help clinicians to better characterize severe preschool wheezers. Objectives: The main objective was to identify bronchial remodeling-based latent classes of severe preschool wheezers. Secondary objectives were to compare cross-sectional and longitudinal clinical and biological data between classes and to assess the safety of bronchoscopy. Methods: This double-center prospective study (NCT02806466) included severe preschool wheezers (1-5 yr old) requiring fiberoptic bronchoscopy. Bronchial remodeling parameters (i.e., epithelial integrity, reticular basement membrane [RBM] thickness, mucus gland, fibrosis and bronchial smooth muscle [BSM] areas, the density of blood vessels, and RBM-BSM distance) were assessed and evaluated by latent class analysis. An independent cohort of severe preschool wheezers (NCT04558671) was used to validate our results. Measurements and Main Results: Fiberoptic bronchoscopy procedures were well tolerated. A two-class model was identified: Class BR1 was characterized by increased RBM thickness, normalized BSM area, the density of blood vessels, decreased mucus gland area, fibrosis, and RBM-BSM distance compared with Class BR2. No significant differences were found between classes in the year before fiberoptic bronchoscopy. By contrast, Class BR1 was associated with a shorter time to first exacerbation and an increased risk of both frequent (3 or more) and severe exacerbations during the year after bronchoscopy in the two cohorts. Conclusions: Assessing bronchial remodeling identified severe preschool wheezers at risk of frequent and severe subsequent exacerbations with a favorable benefit to risk ratio.


Subject(s)
Asthma , Child , Child, Preschool , Humans , Cross-Sectional Studies , Latent Class Analysis , Prospective Studies , Bronchi
13.
J Allergy Clin Immunol ; 150(1): 104-113, 2022 07.
Article in English | MEDLINE | ID: mdl-35143808

ABSTRACT

BACKGROUND: Patients with severe asthma show an increase in both exacerbation frequency and bronchial smooth muscle (BSM) mass. Rhinovirus (RV) infection of the bronchial epithelium (BE) is the main trigger of asthma exacerbations. Histological analysis of biopsies shows that a close connection between BE and hypertrophic BSM is a criterion for severity of asthma. OBJECTIVE: We hypothesized that RV infection of BE specifically increases BSM-cell migration from patients with asthma. METHODS: Serum samples, biopsies, or BSM cells were obtained from 86 patients with severe asthma and 31 subjects without asthma. BE cells from subjects without asthma were cultured in an air-liquid interface and exposed to RV-16. Migration of BSM cells was assessed in response to BE supernatant using chemotaxis assays. Chemokine concentrations were analyzed by transcriptomics and ELISAs. Immunocytochemistry, western blotting, and flow cytometry were used to quantify CXCR3 isoform distribution. CXCR3 downstream signaling pathways were assessed by calcium imaging and western blots. RESULTS: BSM cells from patients with severe asthma specifically migrated toward RV-infected BE, whereas those from subjects without asthma did not. This specific migration is driven by BE C-X-C motif chemokine ligand 10, which was increased in vitro in response to RV infection as well as in vivo in serum from exacerbating patients with severe asthma. The mechanism is related to both decreased expression and activation of the CXCR3-B-specific isoform in BSM cells from those with severe asthma. CONCLUSIONS: We have demonstrated a novel mechanism of BSM remodeling in patients with severe asthma following RV exacerbation. This study highlights the C-X-C motif chemokine ligand 10/CXCR3-A axis as a potential therapeutic target in severe asthma.


Subject(s)
Asthma , Enterovirus Infections , Asthma/drug therapy , Cell Movement , Enterovirus Infections/metabolism , Epithelium/pathology , Humans , Ligands , Myocytes, Smooth Muscle/metabolism , Rhinovirus
14.
Mod Pathol ; 35(1): 69-76, 2022 01.
Article in English | MEDLINE | ID: mdl-34480081

ABSTRACT

We report nine examples of a previously undescribed type of peritoneal circumscribed nodular mesothelial tumor characterized by nests or sheets of mesothelial cells with sharp cell borders and extremely bland, sometimes grooved, nuclei. In some cases, nests were separated by fibrous bands. All patients were women, age range 30-72 years (median 52 years). All tumors were incidental findings during surgery and grossly were either solitary nodules or a few small nodules on the peritoneal surface. Referring pathologic diagnoses included diffuse malignant mesothelioma, localized malignant mesothelioma, well-differentiated papillary mesothelioma, and adenomatoid tumor. No tumor showed BAP1 loss by immunohistochemistry nor deletion of CDKN2A by FISH. RNA-seq revealed that these tumors clustered together and were distinct from peritoneal diffuse malignant mesotheliomas. Very few mutations or translocations were found, none of them recurrent from tumor to tumor, and no tumor showed an abnormality in any of the genes typically mutated/deleted in diffuse malignant mesothelioma. Array CGH on three cases revealed two with a completely flat profile and one with a small deletion at 3q26-3q28. On follow-up (range 5-60, median 34 months), there were no deaths, no recurrences, and no evidence of metastatic disease nor local spread; one case that initially had scattered nodules on the pelvic peritoneum had the same pattern of nodules at a second look operation 2 years later. We propose the name solid papillary mesothelial tumor for these lesions. These appear to be either benign or very low-grade tumors that need to be separated from malignant mesotheliomas.


Subject(s)
Carcinoma, Papillary/pathology , Neoplasms, Mesothelial/pathology , Peritoneal Neoplasms/pathology , Adult , Aged , Carcinoma, Papillary/genetics , Chi-Square Distribution , Cluster Analysis , Cohort Studies , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , In Situ Hybridization, Fluorescence , Incidental Findings , Middle Aged , Mutation , Neoplasms, Mesothelial/genetics , Peritoneal Neoplasms/genetics , Prognosis , Sequence Analysis, RNA , Signal Transduction , Time Factors , Translocation, Genetic
16.
Eur Respir J ; 58(5)2021 11.
Article in English | MEDLINE | ID: mdl-33833033

ABSTRACT

BACKGROUND: Bronchial smooth muscle (BSM) remodelling in asthma is related to an increased mitochondrial biogenesis and enhanced BSM cell proliferation in asthma. Since mitochondria produce the highest levels of cellular energy and fatty acid ß-oxidation is the most powerful way to produce ATP, we hypothesised that, in asthmatic BSM cells, energetic metabolism is shifted towards the ß-oxidation of fatty acids. OBJECTIVES: We aimed to characterise BSM cell metabolism in asthma both in vitro and ex vivo to identify a novel target for reducing BSM cell proliferation. METHODS: 21 asthmatic and 31 non-asthmatic patients were enrolled. We used metabolomic and proteomic approaches to study BSM cells. Oxidative stress, ATP synthesis, fatty acid endocytosis, metabolite production, metabolic capabilities, mitochondrial networks, cell proliferation and apoptosis were assessed on BSM cells. Fatty acid content was assessed in vivo using matrix-assisted laser desorption/ionisation spectrometry imaging. RESULTS: Asthmatic BSM cells were characterised by an increased rate of mitochondrial respiration with a stimulated ATP production and mitochondrial ß-oxidation. Fatty acid consumption was increased in asthmatic BSM both in vitro and ex vivo. Proteome remodelling of asthmatic BSM occurred via two canonical mitochondrial pathways. The levels of carnitine palmitoyl transferase (CPT)2 and low-density lipoprotein (LDL) receptor, which internalise fatty acids through mitochondrial and cell membranes, respectively, were both increased in asthmatic BSM cells. Blocking CPT2 or LDL receptor drastically and specifically reduced asthmatic BSM cell proliferation. CONCLUSION: This study demonstrates a metabolic switch towards mitochondrial ß-oxidation in asthmatic BSM and identifies fatty acid metabolism as a new key target to reduce BSM remodelling in asthma.


Subject(s)
Asthma , Proteomics , Asthma/metabolism , Bronchi , Fatty Acids/metabolism , Humans , Muscle, Smooth , Oxidation-Reduction
17.
J Clin Invest ; 131(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33393495

ABSTRACT

Metabolic reprogramming is a common hallmark of cancer, but a large variability in tumor bioenergetics exists between patients. Using high-resolution respirometry on fresh biopsies of human lung adenocarcinoma, we identified 2 subgroups reflected in the histologically normal, paired, cancer-adjacent tissue: high (OX+) mitochondrial respiration and low (OX-) mitochondrial respiration. The OX+ tumors poorly incorporated [18F]fluorodeoxy-glucose and showed increased expression of the mitochondrial trifunctional fatty acid oxidation enzyme (MTP; HADHA) compared with the paired adjacent tissue. Genetic inhibition of MTP altered OX+ tumor growth in vivo. Trimetazidine, an approved drug inhibitor of MTP used in cardiology, also reduced tumor growth and induced disruption of the physical interaction between the MTP and respiratory chain complex I, leading to a cellular redox and energy crisis. MTP expression in tumors was assessed using histology scoring methods and varied in negative correlation with [18F]fluorodeoxy-glucose incorporation. These findings provide proof-of-concept data for preclinical, precision, bioenergetic medicine in oxidative lung carcinomas.


Subject(s)
Drug Delivery Systems , Lung Neoplasms/enzymology , Mitochondrial Trifunctional Protein, alpha Subunit , Neoplasm Proteins , Trimetazidine/pharmacology , Cell Line, Tumor , Electron Transport Complex I/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mitochondrial Trifunctional Protein, alpha Subunit/antagonists & inhibitors , Mitochondrial Trifunctional Protein, alpha Subunit/biosynthesis , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/biosynthesis , Oxidation-Reduction
18.
Biochim Biophys Acta Mol Cell Res ; 1867(11): 118808, 2020 11.
Article in English | MEDLINE | ID: mdl-32781095

ABSTRACT

Preclinical lung cancer models are essential for a basic understanding of lung cancer biology and its translation into efficient treatment options for affected patients. Lung cancer cell lines and xenografts derived directly from human lung tumors have proven highly valuable in fundamental oncology research and anticancer drug discovery. Both models inherently comprise advantages and caveats that have to be accounted for. Recently, we have enabled reliable in vitro culture techniques from lung cancer biopsies as Patients Lung Derived Tumoroids (PLDTs). This breakthrough provides the possibility of high-throughput drug screening covering the spectrum of lung cancer phenotypes seen clinically. We have adapted and optimized our in vitro three-dimensional model as a preclinical lung cancer model to recapitulate the tumor microenvironment (TME) using matrix reconstitution. Hence, we developed directly PLDTs to screen for chemotherapeutics and radiation treatment. This original model will enable precision medicine to become a reality, allowing a given patient sample to be screened for effective ex vivo therapeutics, aiming at tailoring of treatments specific to that individual. Hence, this tool can enhance clinical outcomes and avoid morbidity due to ineffective therapies.


Subject(s)
Lung Neoplasms/drug therapy , Lung/pathology , Primary Cell Culture , Tumor Microenvironment/genetics , Animals , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Lung Neoplasms/pathology , Mice , Xenograft Model Antitumor Assays
19.
J Thorac Oncol ; 15(6): 1037-1053, 2020 06.
Article in English | MEDLINE | ID: mdl-32165206

ABSTRACT

INTRODUCTION: Histologic subtypes of malignant pleural mesothelioma are a major prognostic indicator and decision denominator for all therapeutic strategies. In an ambiguous case, a rare transitional mesothelioma (TM) pattern may be diagnosed by pathologists either as epithelioid mesothelioma (EM), biphasic mesothelioma (BM), or sarcomatoid mesothelioma (SM). This study aimed to better characterize the TM subtype from a histological, immunohistochemical, and molecular standpoint. Deep learning of pathologic slides was applied to this cohort. METHODS: A random selection of 49 representative digitalized sections from surgical biopsies of TM was reviewed by 16 panelists. We evaluated BAP1 expression and CDKN2A (p16) homozygous deletion. We conducted a comprehensive, integrated, transcriptomic analysis. An unsupervised deep learning algorithm was trained to classify tumors. RESULTS: The 16 panelists recorded 784 diagnoses on the 49 cases. Even though a Kappa value of 0.42 is moderate, the presence of a TM component was diagnosed in 51%. In 49% of the histological evaluation, the reviewers classified the lesion as EM in 53%, SM in 33%, or BM in 14%. Median survival was 6.7 months. Loss of BAP1 observed in 44% was less frequent in TM than in EM and BM. p16 homozygous deletion was higher in TM (73%), followed by BM (63%) and SM (46%). RNA sequencing unsupervised clustering analysis revealed that TM grouped together and were closer to SM than to EM. Deep learning analysis achieved 94% accuracy for TM identification. CONCLUSION: These results revealed that the TM pattern should be classified as non-EM or at minimum as a subgroup of the SM type.


Subject(s)
Deep Learning , Lung Neoplasms , Mesothelioma , Homozygote , Humans , Lung Neoplasms/genetics , Mesothelioma/genetics , Sequence Deletion , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics
20.
Thorax ; 75(1): 92-95, 2020 01.
Article in English | MEDLINE | ID: mdl-31666386

ABSTRACT

COPA (coatomer subunit α) syndrome is a newly recognised cause of interstitial lung disease in children and adults, frequently associated with arthritis and renal dysfunction. We report a 11-year-old girl with disease limited to major pulmonary haemosiderosis manifesting at the age of 2 years, due to a heterozygous p.(Arg233His) mutation in COPA Her interferon (IFN) signature was elevated (10.312 and 12.429, healthy <2.466), as was the level of serum IFNα (211 fg/mL, healthy <10 fg/mL). STAT1 phosphorylation in T lymphocytes and monocytes was increased as compared with healthy controls. Based on these results she was treated with the JAK1/2 inhibitor ruxolitinib, which resulted in reduction in IFN signalling and appeared to be associated with partial though incomplete decrease in the severity of her pulmonary disease. Patients with alveolar haemorrhage of unknown origin should be considered for COPA screening. Functional tests can help to personalise patient therapy.


Subject(s)
Hemorrhage/drug therapy , Hemosiderosis/drug therapy , Lung Diseases/drug therapy , Pyrazoles/therapeutic use , Child , Female , Hemosiderosis/genetics , Humans , Lung Diseases/genetics , Nitriles , Pyrimidines , Hemosiderosis, Pulmonary
SELECTION OF CITATIONS
SEARCH DETAIL
...