Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 13(3)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35323562

ABSTRACT

The light brown apple moth, Epiphyas postvittana is an invasive, polyphagous pest of horticultural systems around the world. With origins in Australia, the pest has subsequently spread to New Zealand, Hawaii, California and Europe, where it has been found on over 500 plants, including many horticultural crops. We have produced a genomic resource, to understand the biological basis of the polyphagous and invasive nature of this and other lepidopteran pests. The assembled genome sequence encompassed 598 Mb and has an N50 of 301.17 kb, with a BUSCO completion rate of 97.9%. Epiphyas postvittana has 34% of its assembled genome represented as repetitive sequences, with the majority of the known elements made up of longer DNA transposable elements (14.07 Mb) and retrotransposons (LINE 17.83 Mb). Of the 31,389 predicted genes, 28,714 (91.5%) were assigned to 11,438 orthogroups across the Lepidoptera, of which 945 were specific to E. postvittana. Twenty gene families showed significant expansions in E. postvittana, including some likely to have a role in its pest status, such as cytochrome p450s, glutathione-S-transferases and UDP-glucuronosyltransferases. Finally, using a RAD-tag approach, we investigated the population genomics of this pest, looking at its likely patterns of invasion.

2.
Chem Senses ; 34(5): 383-94, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19293399

ABSTRACT

Moths recognize a wide range of volatile compounds, which they use to locate mates, food sources, and oviposition sites. These compounds are recognized by odorant receptors (OR) located within the dendritic membrane of sensory neurons that extend into the lymph of sensilla, covering the surface of insect antennae. We have identified 3 genes encoding ORs from the tortricid moth, Epiphyas postvittana, a pest of horticulture. Like Drosophila melanogaster ORs, they contain 7 transmembrane helices with an intracellular N-terminus, an orientation in the plasma membrane opposite to that of classical GPCRs. EpOR2 is orthologous to the coreceptor Or83b from D. melanogaster. EpOR1 and EpOR3 both recognize a range of terpenoids and benzoates produced by plants. Of the compounds tested, EpOR1 shows the best sensitivity to methyl salicylate [EC(50) = 1.8 x 10(-12) M], a common constituent of floral scents and an important signaling compound produced by plants when under attack from insects and pathogens. EpOR3 best recognizes the monoterpene citral to low concentrations [EC(50) = 1.1 x 10(-13) M]. Citral produces the largest amplitude electrophysiological responses in E. postvittana antennae and elicits repellent activity against ovipositing female moths. Orthologues of EpOR3 were found across 6 families within the Lepidoptera, suggesting that the ability to recognize citral may underpin an important behavior.


Subject(s)
Moths/genetics , Receptors, Odorant/genetics , Volatile Organic Compounds/pharmacology , Acyclic Monoterpenes , Amino Acid Sequence , Animals , Female , Gene Expression Profiling , Molecular Sequence Data , Moths/physiology , Phylogeny , Receptors, Odorant/classification , Salicylates/pharmacology , Sequence Alignment , Terpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...